A Universal Sequence of Tensors for the Asymptotic Rank Conjecture

Authors Petteri Kaski , Mateusz Michałek



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.64.pdf
  • Filesize: 0.91 MB
  • 24 pages

Document Identifiers

Author Details

Petteri Kaski
  • Department of Computer Science, Aalto University, Finland
Mateusz Michałek
  • Fachbereich Mathematik und Statistik, Universität Konstanz, Germany

Acknowledgements

We would like to thank Andreas Björklund, Joseph Landsberg, and Peter Vrana for useful discussions and important comments.

Cite As Get BibTex

Petteri Kaski and Mateusz Michałek. A Universal Sequence of Tensors for the Asymptotic Rank Conjecture. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 64:1-64:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.64

Abstract

The exponent σ(T) of a tensor T ∈ 𝔽^d⊗𝔽^d⊗𝔽^d over a field 𝔽 captures the base of the exponential growth rate of the tensor rank of T under Kronecker powers. Tensor exponents are fundamental from the standpoint of algorithms and computational complexity theory; for example, the exponent ω of square matrix multiplication can be characterized as ω = 2σ(MM₂), where MM₂ ∈ 𝔽⁴⊗𝔽⁴⊗𝔽⁴ is the tensor that represents 2×2 matrix multiplication.
Strassen [FOCS 1986] initiated a duality theory for spaces of tensors that enables one to characterize the exponent of a tensor via objects in a dual space, called the asymptotic spectrum of the primal (tensor) space. While Strassen’s theory has considerable generality beyond the setting of tensors - Wigderson and Zuiddam [Asymptotic Spectra: Theory, Applications, and Extensions, preprint, 2023] give a recent exposition - progress in characterizing the dual space in the tensor setting has been slow, with the first universal points in the dual identified by Christandl, Vrana, and Zuiddam [J. Amer. Math. Soc. 36 (2023)]. In parallel to Strassen’s theory, the algebraic geometry community has developed a geometric theory of tensors aimed at characterizing the structure of the primal space and tensor exponents therein; the latter study was motivated in particular by an observation of Strassen (implicit in [J. Reine Angew. Math. 384 (1988)]) that matrix-multiplication tensors have limited universality in the sense that σ(𝔽^d⊗𝔽^d⊗𝔽^d) ≤ 2ω/3 = 4/3σ(MM₂) holds for all d ≥ 1. In particular, this limited universality of the tensor MM₂ puts forth the question whether one could construct explicit universal tensors that exactly characterize the worst-case tensor exponent in the primal space. Such explicit universal objects would, among others, give means towards a proof or a disproof of Strassen’s asymptotic rank conjecture [Progr. Math. 120 (1994)]; the former would immediately imply ω = 2 and, among others, refute the Set Cover Conjecture (cf. Björklund and Kaski [STOC 2024] and Pratt [STOC 2024]). 
Our main result is an explicit construction of a sequence 𝒰_d of zero-one-valued tensors that is universal for the worst-case tensor exponent; more precisely, we show that σ(𝒰_d) = σ(d) where σ(d) = sup_{T ∈ 𝔽^d⊗𝔽^d⊗𝔽^d}σ(T). We also supply an explicit universal sequence 𝒰_Δ localised to capture the worst-case exponent σ(Δ) of tensors with support contained in Δ ⊆ [d]×[d]×[d]; by combining such sequences, we obtain a universal sequence 𝒯_d such that σ(𝒯_d) = 1 holds if and only if Strassen’s asymptotic rank conjecture holds for d. Finally, we show that the limit lim_{d → ∞}σ(d) exists and can be captured as lim_{d → ∞} σ(D_d) for an explicit sequence (D_d)_{d = 1}^∞ of tensors obtained by diagonalisation of the sequences 𝒰_d.
As our second result we relate the absence of polynomials of fixed degree vanishing on tensors of low rank, or more generally asymptotic rank, with upper bounds on the exponent σ(d). Using this technique, one may bound asymptotic rank for all tensors of a given format, knowing enough specific tensors of low asymptotic rank.

Subject Classification

ACM Subject Classification
  • Mathematics of computing
  • Theory of computation → Algebraic complexity theory
Keywords
  • asymptotic rank conjecture
  • secant variety
  • Specht module
  • tensor rank
  • tensor exponent

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank: Some lower and upper bounds. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 283-291. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/CCC.2011.28.
  2. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522-539. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
  3. Josh Alman and Hengjie Zhang. Generalizations of matrix multiplication can solve the light bulb problem. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1471-1495. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00090.
  4. Alessandra Bernardi and Kristian Ranestad. On the cactus rank of cubics forms. J. Symbolic Comput., 50:291-297, 2013. URL: https://doi.org/10.1016/j.jsc.2012.08.001.
  5. Alessandra Bernardi and Daniele Taufer. Waring, tangential and cactus decompositions. J. Math. Pures Appl. (9), 143:1-30, 2020. URL: https://doi.org/10.1016/j.matpur.2020.07.003.
  6. Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n^2.7799) complexity for n× n approximate matrix multiplication. Inform. Process. Lett., 8(5):234-235, 1979. URL: https://doi.org/10.1016/0020-0190(79)90113-3.
  7. Andreas Björklund and Petteri Kaski. The asymptotic rank conjecture and the set cover conjecture are not both true. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 859-870. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649656.
  8. Markus Bläser. A 5/2 n²-lower bound for the rank of n× n-matrix multiplication over arbitrary fields. In 40th Annual Symposium on Foundations of Computer Science (New York, 1999), pages 45-50. IEEE Computer Soc., Los Alamitos, CA, 1999. URL: https://doi.org/10.1109/SFFCS.1999.814576.
  9. Markus Bläser, Matthias Christandl, and Jeroen Zuiddam. The border support rank of two-by-two matrix multiplication is seven. Chic. J. Theoret. Comput. Sci., pages Art. 5, 16, 2018. URL: https://doi.org/10.4086/cjtcs.2018.005.
  10. Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans. Matrix multiplication via matrix groups. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 19:1-19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ITCS.2023.19.
  11. Paul Breiding, Reuven Hodges, Christian Ikenmeyer, and Mateusz Michałek. Equations for GL invariant families of polynomials. Vietnam J. Math., 50(2):545-556, 2022. URL: https://doi.org/10.1007/s10013-022-00549-4.
  12. Weronika Buczyńska and Jarosław Buczyński. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebraic Geom., 23(1):63-90, 2014. URL: https://doi.org/10.1090/S1056-3911-2013-00595-0.
  13. Weronika Buczyńska and Jarosław Buczyński. Apolarity, border rank, and multigraded Hilbert scheme. Duke Math. J., 170(16):3659-3702, 2021. URL: https://doi.org/10.1215/00127094-2021-0048.
  14. Jarosław Buczyński and J. M. Landsberg. Ranks of tensors and a generalization of secant varieties. Linear Algebra Appl., 438(2):668-689, 2013. URL: https://doi.org/10.1016/j.laa.2012.05.001.
  15. Peter Bürgisser. Degenerationsordnung und Trägerfunktional bilinearer Abbildungen. PhD thesis, Universität Konstanz, 1990. URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-20311.
  16. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. URL: https://doi.org/10.1007/978-3-662-03338-8.
  17. Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Barriers for fast matrix multiplication from irreversibility. Theory Comput., 17:Paper No. 2, 32, 2021. URL: https://doi.org/10.4086/toc.2021.v017a002.
  18. Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36(1):31-79, 2023. URL: https://doi.org/10.1090/jams/996.
  19. Henry Cohn, Robert D. Kleinberg, Balázs Szegedy, and Christopher Umans. Group-theoretic algorithms for matrix multiplication. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 379-388. IEEE Computer Society, 2005. URL: https://doi.org/10.1109/SFCS.2005.39.
  20. Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix multiplication. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 438-449. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238217.
  21. Henry Cohn and Christopher Umans. Fast matrix multiplication using coherent configurations. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1074-1087. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.77.
  22. Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, and Emanuele Ventura. Rank and border rank of Kronecker powers of tensors and Strassen’s laser method. Comput. Complexity, 31(1):Paper No. 1, 40, 2022. URL: https://doi.org/10.1007/s00037-021-00217-y.
  23. Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, Emanuele Ventura, and Yao Wang. Towards a geometric approach to Strassen’s asymptotic rank conjecture. Collect. Math., 72(1):63-86, 2021. URL: https://doi.org/10.1007/s13348-020-00280-8.
  24. Austin Conner, Alicia Harper, and J. M. Landsberg. New lower bounds for matrix multiplication and det₃. Forum Math. Pi, 11:Paper No. e17, 30, 2023. URL: https://doi.org/10.1017/fmp.2023.14.
  25. D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. SIAM J. Comput., 11(3):472-492, 1982. URL: https://doi.org/10.1137/0211038.
  26. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251-280, 1990. URL: https://doi.org/10.1016/S0747-7171(08)80013-2.
  27. David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. URL: https://doi.org/10.1007/978-3-319-16721-3.
  28. Imre Csiszár and János Körner. Information Theory. Cambridge University Press, Cambridge, second edition, 2016. Google Scholar
  29. Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1-41:24, 2016. URL: https://doi.org/10.1145/2925416.
  30. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  31. Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2129-2138. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00130.
  32. Maciej Gałązka. Vector bundles give equations of cactus varieties. Linear Algebra Appl., 521:254-262, 2017. URL: https://doi.org/10.1016/j.laa.2016.12.005.
  33. Maciej Gałązka. Multigraded apolarity. Math. Nachr., 296(1):286-313, 2023. URL: https://doi.org/10.1002/mana.202000484.
  34. Philip Alan Gartenberg. Fast Rectangular Matrix Multiplication. PhD thesis, University of California, Los Angeles, 1985. URL: https://www.proquest.com/dissertations-theses/fast-rectangular-matrix-multiplication-algebraic/docview/303332114/se-2.
  35. Johan Håstad. Tensor rank is NP-complete. J. Algorithms, 11(4):644-654, 1990. URL: https://doi.org/10.1016/0196-6774(90)90014-6.
  36. Jonathan D. Hauenstein, Christian Ikenmeyer, and J. M. Landsberg. Equations for lower bounds on border rank. Exp. Math., 22(4):372-383, 2013. URL: https://doi.org/10.1080/10586458.2013.825892.
  37. Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. J. ACM, 60(6):Art. 45, 39, 2013. URL: https://doi.org/10.1145/2512329.
  38. Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and Determinantal Loci, volume 1721 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. URL: https://doi.org/10.1007/BFb0093426.
  39. Matti Karppa and Petteri Kaski. Probabilistic tensors and opportunistic Boolean matrix multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 496-515. SIAM, Philadelphia, PA, 2019. URL: https://doi.org/10.1137/1.9781611975482.31.
  40. Robert Krauthgamer and Ohad Trabelsi. The set cover conjecture and subgraph isomorphism with a tree pattern. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 45:1-45:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.45.
  41. J. M. Landsberg. The border rank of the multiplication of 2x2 matrices is seven. J. Amer. Math. Soc., 19(2):447-459, 2006. URL: https://doi.org/10.1090/S0894-0347-05-00506-0.
  42. J. M. Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. URL: https://doi.org/10.1090/gsm/128.
  43. J. M. Landsberg. New lower bounds for the rank of matrix multiplication. SIAM J. Comput., 43(1):144-149, 2014. URL: https://doi.org/10.1137/120880276.
  44. J. M. Landsberg. Nontriviality of equations and explicit tensors in ℂ^m⊗ℂ^m⊗ℂ^m of border rank at least 2m-2. J. Pure Appl. Algebra, 219(8):3677-3684, 2015. URL: https://doi.org/10.1016/j.jpaa.2014.12.016.
  45. J. M. Landsberg. Tensors: Asymptotic Geometry and Developments 2016-2018, volume 132 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2019. URL: https://doi.org/10.1090/cbms/132.
  46. J. M. Landsberg and L. Manivel. On the ideals of secant varieties of Segre varieties. Found. Comput. Math., 4(4):397-422, 2004. URL: https://doi.org/10.1007/s10208-003-0115-9.
  47. J. M. Landsberg and Mateusz Michałek. On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry. SIAM J. Appl. Algebra Geom., 1(1):2-19, 2017. URL: https://doi.org/10.1137/16M1067457.
  48. J. M. Landsberg and Mateusz Michałek. Towards finding hay in a haystack: explicit tensors of border rank greater than 2.02m in ℂ^m⊗ ℂ^m⊗ℂ^m. CoRR, abs/1912.11927, 2019. URL: https://doi.org/10.48550/arXiv.1912.11927.
  49. J. M. Landsberg and Giorgio Ottaviani. Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. (4), 192(4):569-606, 2013. URL: https://doi.org/10.1007/s10231-011-0238-6.
  50. J. M. Landsberg and Zach Teitler. On the ranks and border ranks of symmetric tensors. Found. Comput. Math., 10(3):339-366, 2010. URL: https://doi.org/10.1007/s10208-009-9055-3.
  51. Joseph M. Landsberg and Mateusz Michałek. A 2n²-log₂(n)-1 lower bound for the border rank of matrix multiplication. Int. Math. Res. Not. IMRN, 15:4722-4733, 2018. URL: https://doi.org/10.1093/imrn/rnx025.
  52. Joseph M. Landsberg and Giorgio Ottaviani. New lower bounds for the border rank of matrix multiplication. Theory Comput., 11:285-298, 2015. URL: https://doi.org/10.4086/toc.2015.v011a011.
  53. François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC 2014 - Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pages 296-303. ACM, New York, 2014. URL: https://doi.org/10.1145/2608628.2608664.
  54. Franz Mauch. Ein Randverteilungsproblem und seine Anwendung auf das asymptotische Spektrum bilinearer Abbildungen. PhD thesis, Universität Konstanz, 1998. URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-20543.
  55. Mateusz Michałek and Bernd Sturmfels. Invitation to Nonlinear Algebra, volume 211 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2021. URL: https://doi.org/10.1090/gsm/211.
  56. Ketan Mulmuley. The GCT program toward the P vs. NP problem. Commun. ACM, 55(6):98-107, 2012. URL: https://doi.org/10.1145/2184319.2184341.
  57. Ketan D. Mulmuley. On P vs. NP and geometric complexity theory. J. ACM, 58(2):Art. 5, 26, 2011. URL: https://doi.org/10.1145/1944345.1944346.
  58. Victor Y. Pan. Strassen’s algorithm is not optimal: Trililnear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978, pages 166-176. IEEE Computer Society, 1978. URL: https://doi.org/10.1109/SFCS.1978.34.
  59. Kevin Pratt. A stronger connection between the asymptotic rank conjecture and the set cover conjecture. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 871-874. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649620.
  60. Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):Art. 40, 15, 2013. URL: https://doi.org/10.1145/2535928.
  61. Francesco Romani. Some properties of disjoint sums of tensors related to matrix multiplication. SIAM J. Comput., 11(2):263-267, 1982. URL: https://doi.org/10.1137/0211020.
  62. A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434-455, 1981. URL: https://doi.org/10.1137/0210032.
  63. Zhao Song, David P. Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2772-2789. SIAM, Philadelphia, PA, 2019. URL: https://doi.org/10.1137/1.9781611975482.172.
  64. Richard P. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. URL: https://doi.org/10.1017/CBO9780511609589.
  65. Andrew James Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of Edinburgh, 2010. URL: http://hdl.handle.net/1842/4734.
  66. V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406-443, 1987. URL: https://doi.org/10.1515/crll.1987.375-376.406.
  67. V. Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102-152, 1988. URL: https://doi.org/10.1515/crll.1988.384.102.
  68. V. Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127-180, 1991. URL: https://doi.org/10.1515/crll.1991.413.127.
  69. V. Strassen. Algebra and complexity. In First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 429-446. Birkhäuser, Basel, 1994. Google Scholar
  70. Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354-356, 1969. URL: https://doi.org/10.1007/BF02165411.
  71. Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 49-54. IEEE Computer Society, 1986. URL: https://doi.org/10.1109/SFCS.1986.52.
  72. Volker Strassen. Komplexität und Geometrie bilinearer Abbildungen. Jahresber. Deutsch. Math.-Verein., 107(1):3-31, 2005. Google Scholar
  73. Zach Teitler. Geometric lower bounds for generalized ranks. CoRR, abs/1406.5145, 2014. URL: https://doi.org/10.48550/arXiv.1406.5145.
  74. Verena Tobler. Spezialisierung und Degeneration von Tensoren. PhD thesis, Universität Konstanz, 1991. URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-20324.
  75. Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd [extended abstract]. In STOC'12 - Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 887-898. ACM, New York, 2012. URL: https://doi.org/10.1145/2213977.2214056.
  76. Avi Wigderson and Jeroen Zuiddam. Asymptotic spectra: Theory, applications and extensions. Manuscript dated October 24, 2023; available at https://www.math.ias.edu/~avi/PUBLICATIONS/WigdersonZu_Final_Draft_Oct2023.pdf, 2023.
  77. John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska. Specht polytopes and Specht matroids. In Combinatorial Algebraic Geometry, volume 80 of Fields Inst. Commun., pages 201-228. Fields Inst. Res. Math. Sci., Toronto, ON, 2017. Google Scholar
  78. F. L. Zak. Tangents and Secants of Algebraic Varieties, volume 127 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1993. URL: https://doi.org/10.1090/mmono/127.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail