We introduce Online Balanced Allocation of Dynamic Components (OBADC), a problem motivated by the practical challenge of dynamic resource allocation for large-scale distributed applications. In OBADC, we need to allocate a dynamic set of at most k𝓁 vertices (representing processes) in 𝓁 > 0 clusters. We consider an over-provisioned setup in which each cluster can hold at most k(1+ε) vertices, for an arbitrary constant ε > 0. The communication requirements among the vertices are modeled by the notion of a dynamically changing component, which is a subset of vertices that need to be co-located in the same cluster. At each time t, a request r_t of one of the following types arrives: 1) insertion of a vertex v forming a singleton component v at unit cost. 2) merge of (u,v) requiring that the components containing u and v be merged and co-located thereafter. 3) deletion of an existing vertex v at zero cost. Before serving any request, an algorithm can migrate vertices from one cluster to another, at a unit migration cost per vertex. We seek an online algorithm to minimize the total migration cost incurred for an arbitrary request sequence σ = (r_t)_{t > 0}, while simultaneously minimizing the number of clusters utilized. We analyze competitiveness with respect to an optimal clairvoyant offline algorithm with identical (over-provisioned) capacity constraints. We give an O(log k)-competitive algorithm for OBADC, and a matching lower-bound. The number of clusters utilized by our algorithm is always within a (2+ε) factor of the minimum. Furthermore, in a resource augmented setting where the optimal offline algorithm is constrained to capacity k per cluster, our algorithm obtains O(log k) competitiveness and utilizes a number of clusters within (1+ε) factor of the minimum. We also consider OBADC in the context of machine-learned predictions, where for each newly inserted vertex v at time t: i) with probability η > 0, the set of vertices (that exist at time t) in the component of v is revealed and, ii) with probability 1-η, no information is revealed. For OBADC with predictions, we give a O(1)-consistent and O(min(log 1/(η), log k))-robust algorithm.
@InProceedings{rajaraman_et_al:LIPIcs.ITCS.2025.81, author = {Rajaraman, Rajmohan and Wasim, Omer}, title = {{Online Balanced Allocation of Dynamic Components}}, booktitle = {16th Innovations in Theoretical Computer Science Conference (ITCS 2025)}, pages = {81:1--81:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-361-4}, ISSN = {1868-8969}, year = {2025}, volume = {325}, editor = {Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.81}, URN = {urn:nbn:de:0030-drops-227090}, doi = {10.4230/LIPIcs.ITCS.2025.81}, annote = {Keywords: online algorithms, competitive ratio, algorithms with predictions} }
Feedback for Dagstuhl Publishing