LIPIcs.ITCS.2025.92.pdf
- Filesize: 1.79 MB
- 21 pages
This work considers the problem of output-sensitive listing of occurrences of 2k-cycles for fixed constant k ≥ 2 in an undirected host graph with m edges and t 2k-cycles. Recent work of Jin and Xu (and independently Abboud, Khoury, Leibowitz, and Safier) [STOC 2023] gives an O(m^{4/3}+t) time algorithm for listing 4-cycles, and recent work by Jin, Vassilevska Williams and Zhou [SOSA 2024] gives an Õ(n²+t) time algorithm for listing 6-cycles in n node graphs. We focus on resolving the next natural question: obtaining listing algorithms for 6-cycles in the sparse setting, i.e., in terms of m rather than n. Previously, the best known result here is the better of Jin, Vassilevska Williams and Zhou’s Õ(n²+t) algorithm and Alon, Yuster and Zwick’s O(m^{5/3}+t) algorithm. We give an algorithm for listing 6-cycles with running time Õ(m^{1.6}+t). Our algorithm is a natural extension of Dahlgaard, Knudsen and Stöckel’s [STOC 2017] algorithm for detecting a 2k-cycle. Our main technical contribution is the analysis of the algorithm which involves a type of "supersaturation" lemma relating the number of 2k-cycles in a bipartite graph to the sizes of the parts in the bipartition and the number of edges. We also give a simplified analysis of Dahlgaard, Knudsen and Stöckel’s 2k-cycle detection algorithm (with a small polylogarithmic increase in the running time), which is helpful in analyzing our listing algorithm.
Feedback for Dagstuhl Publishing