Polynomials, Divided Differences, and Codes

Author S. Venkitesh



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.93.pdf
  • Filesize: 1 MB
  • 25 pages

Document Identifiers

Author Details

S. Venkitesh
  • Tel Aviv University, Israel

Acknowledgements

The author thanks Dean Doron, Mrinal Kumar, Noga Ron-Zewi, Amnon Ta-Shma, and Mary Wootters for patiently listening to and giving feedback on presentations of this work at different times. A part of this work was done while the author was a postdoc at the Department of Computer Science, University of Haifa, and was participating in the program on Error Correcting Codes and Computation (2024) at the Simons Institute for the Theory of Computing, UC Berkeley.

Cite As Get BibTex

S. Venkitesh. Polynomials, Divided Differences, and Codes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 93:1-93:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.93

Abstract

Multiplicity codes (Kopparty et al., J. ACM 2014) are multivariate polynomial codes where the codewords are described by evaluations of polynomials (with a degree bound) and their derivatives up to some order (the multiplicity parameter), on a suitably chosen affine set of points. While efficient decoding algorithms were known in some special cases of point sets, by a reduction to univariate multiplicity codes, a general algorithm for list decoding up to the distance of the code when the point set is an arbitrary finite grid, was obtained only recently (Bhandari et al., IEEE TIT 2023). This required the characteristic of the field to be zero or larger than the degree bound, which is somewhat necessary since list decoding up to distance with small output list size is not possible when the characteristic is significantly smaller than the degree.
In this work, we present an alternative construction based on divided differences of polynomials, that conceptually resembles the classical multiplicity codes but has good list decodability "insensitive to the field characteristic". We obtain a simple algorithm that list decodes this code up to distance for arbitrary finite grids over all finite fields. Our construction can also be interpreted as a folded Reed-Muller code, which may be of independent interest.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Coding theory
  • Theory of computation → Error-correcting codes
Keywords
  • Error-correcting code
  • polynomial code
  • Reed-Solomon code
  • Reed-Muller code
  • folded Reed-Solomon code
  • folded Reed-Muller code
  • multiplicity code
  • divided difference
  • q-derivative
  • polynomial method
  • list decoding
  • list decoding capacity
  • linear algebraic list decoding

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8(1-2):7-29, 1999. URL: https://doi.org/10.1017/S0963548398003411.
  2. Omar Alrabiah, Venkatesan Guruswami, and Ray Li. Randomly Punctured Reed–Solomon Codes Achieve List-Decoding Capacity over Linear-Sized Fields. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, pages 1458-1469, New York, NY, USA, 2024. Association for Computing Machinery. URL: https://doi.org/10.1145/3618260.3649634.
  3. G.E. Andrews. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, volume 66 of CBMS Regional Conference Lecture Series in Mathematics. AMS, 1986. Google Scholar
  4. M.H. Annaby and Z.S. Mansour. q-Taylor and interpolation series for Jackson q-difference operators. Journal of Mathematical Analysis and Applications, 344(1):472-483, 2008. URL: https://doi.org/10.1016/j.jmaa.2008.02.033.
  5. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC '91, pages 21-32, New York, NY, USA, 1991. Association for Computing Machinery. URL: https://doi.org/10.1145/103418.103428.
  6. Simeon Ball and Oriol Serra. Punctured combinatorial nullstellensätze. Combinatorica, 29(5):511-522, 2009. URL: https://doi.org/10.1007/s00493-009-2509-z.
  7. Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace Polynomials and Limits to List Decoding of Reed–Solomon Codes. IEEE Transactions on Information Theory, 56(1):113-120, 2010. URL: https://doi.org/10.1109/TIT.2009.2034780.
  8. Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Ashutosh Shankar. Algorithmizing the Multiplicity Schwartz-Zippel Lemma. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2816-2835. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch106.
  9. Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan. Decoding Multivariate Multiplicity Codes on Product Sets. IEEE Transactions on Information Theory, 70(1):154-169, 2024. URL: https://doi.org/10.1109/TIT.2023.3306849.
  10. George Boole. A Treatise on the Calculus of Finite Differences. MacMillan and Co., 1860. Reprint: Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9780511693014.
  11. Joshua Brakensiek, Sivakanth Gopi, and Visu Makam. Generic Reed-Solomon Codes Achieve List-Decoding Capacity. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 1488-1501, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3564246.3585128.
  12. Yeyuan Chen and Zihan Zhang. Explicit Folded Reed-Solomon and Multiplicity Codes Achieve Relaxed Generalized Singleton Bound. arXiv Preprint, 2024. URL: https://doi.org/10.48550/arXiv.2408.15925.
  13. David Cox, John Little, and Donald O'Shea. Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer Science & Business Media, 2013. Google Scholar
  14. P. Delsarte, J.M. Goethals, and F.J. Mac Williams. On generalized Reed Muller codes and their relatives. Information and Control, 16(5):403-442, 1970. URL: https://doi.org/10.1016/S0019-9958(70)90214-7.
  15. Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the Method of Multiplicities, with Applications to Kakeya Sets and Mergers. SIAM Journal on Computing, 42(6):2305-2328, 2013. URL: https://doi.org/10.1137/100783704.
  16. Peter Elias. List Decoding for Noisy Channels. Ph.d. thesis, Massachusetts Institute of Technology, 1957. RLE Technical Report No. 335. URL: http://hdl.handle.net/1721.1/4484.
  17. Thomas Ernst. A Comprehensive Treatment of q-Calculus. Birkhäuser Basel, 2012. URL: https://doi.org/10.1007/978-3-0348-0431-8.
  18. H. Exton. q-Hypergeometric Functions and Applications. Halsted Press, Chichister, 1983. Google Scholar
  19. Bálint Felszeghy, Balázs Ráth, and Lajos Rónyai. The lex game and some applications. Journal of Symbolic Computation, 41(6):663-681, 2006. URL: https://doi.org/10.1016/j.jsc.2005.11.003.
  20. Dominique Foata and Guo-Niu Han. The q-Series in Combinatorics: Permutation Statistics (Lecture addendums, revised version). Unpublished, 2021. Available at URL: https://irma.math.unistra.fr/~foata/paper/pub91.pdf.
  21. George Gasper and Mizan Rahman. Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 2004. URL: https://doi.org/10.1017/CBO9780511526251.
  22. Carl Friedrich Gauß. Summatio quarumdam serierum singularium. Dieterich, 1808. Digitized version available at URL: http://eudml.org/doc/203313.
  23. O. Geil and U. Martínez-Peñas. Bounding the Number of Common Zeros of Multivariate Polynomials and their Consecutive Derivatives. Combinatorics, Probability and Computing, 28(2):253-279, 2019. URL: https://doi.org/10.1017/S0963548318000342.
  24. Rohan Goyal, Prahladh Harsha, Mrinal Kumar, and Ashutosh Shankar. Fast list-decoding of univariate multiplicity and folded Reed-Solomon codes. arXiv Preprint, 2023. URL: https://doi.org/10.48550/arXiv.2311.17841.
  25. Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization from algebraic hardness. SIAM Journal on Computing, 51(2):315-335, 2022. URL: https://doi.org/10.1137/20M1347395.
  26. Zeyu Guo and Zihan Zhang. Randomly Punctured Reed-Solomon Codes Achieve the List Decoding Capacity over Polynomial-Size Alphabets. arXiv Preprint, 2023. URL: https://doi.org/10.48550/arXiv.2304.01403.
  27. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric codes. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), pages 28-37, 1998. URL: https://doi.org/10.1109/SFCS.1998.743426.
  28. Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135-150, 2008. URL: https://doi.org/10.1109/TIT.2007.911222.
  29. Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of reed–solomon codes. IEEE Transactions on Information Theory, 59(6):3257-3268, 2013. URL: https://doi.org/10.1109/TIT.2013.2246813.
  30. Wolfgang Hahn. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Mathematische Nachrichten, 2(1-2):4-34, 1949. URL: https://doi.org/10.1002/mana.19490020103.
  31. F. H. Jackson. A q-form of Taylor’s theorem. Messenger of Mathematics, 38:62-64, 1909. Google Scholar
  32. F. H. Jackson. A q-series corresponding to Taylor’s series. Messenger of Mathematics, 39:26-28, 1909. Google Scholar
  33. F. H. Jackson. On q-Functions and a certain Difference Operator. Transactions of the Royal Society of Edinburgh, 46(2):253-281, 1909. URL: https://doi.org/10.1017/S0080456800002751.
  34. F. H. Jackson. On q-Definite Integrals. The Quarterly Journal of Pure and Applied Mathematics, 41:193-203, 1910. Google Scholar
  35. F. H. Jackson. q-Difference Equations. American Journal of Mathematics, 32(4):305-314, 1910. URL: https://doi.org/10.2307/2370183.
  36. Charles Jordan. Calculus of Finite Differences. Chelsea Publishing Company, New York, 2nd edition, 1950. Google Scholar
  37. Victor Kac and Pokman Cheung. Quantum Calculus. Springer New York, NY, 2002. URL: https://doi.org/10.1007/978-1-4613-0071-7.
  38. R. Kannan. Solving systems of linear equations over polynomials. Theoretical Computer Science, 39:69-88, 1985. Third Conference on Foundations of Software Technology and Theoretical Computer Science. URL: https://doi.org/10.1016/0304-3975(85)90131-8.
  39. T. Kasami, Shu Lin, and W. Peterson. New generalizations of the Reed-Muller codes-I: Primitive codes. IEEE Transactions on Information Theory, 14(2):189-199, 1968. URL: https://doi.org/10.1109/TIT.1968.1054127.
  40. T. Kasami, Shu Lin, and W. Peterson. Polynomial codes. IEEE Transactions on Information Theory, 14(6):807-814, 1968. URL: https://doi.org/10.1109/TIT.1968.1054226.
  41. John Y. Kim and Swastik Kopparty. Decoding Reed-Muller Codes over Product Sets. Theory of Computing, 13(21):1-38, 2017. URL: https://doi.org/10.4086/toc.2017.v013a021.
  42. Wolfram Koepf, Predrag M. Rajković, and Sladjana D. Marinković. Properties of q-holonomic functions. Journal of Difference Equations and Applications, 13(7):621-638, 2007. URL: https://doi.org/10.1080/10236190701264925.
  43. Swastik Kopparty. List-Decoding Multiplicity Codes. Theory of Computing, 11(5):149-182, 2015. URL: 10.4086/toc.2015.v011a005, URL: https://doi.org/10.4086/TOC.2015.V011A005.
  44. Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved List Decoding of Folded Reed-Solomon and Multiplicity Codes. SIAM Journal on Computing, 52(3):794-840, 2023. URL: https://doi.org/10.1137/20M1370215.
  45. Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-Rate Codes with Sublinear-Time Decoding. J. ACM, 61(5), 2014. URL: https://doi.org/10.1145/2629416.
  46. S.F. Lacroix. Traité des Différences et des Séries. Vol. 3 of Traité du Calcul Differentiel et du Calcul Intégral. Courcier, Paris, 1819. Google Scholar
  47. D. Larsson and S.D. Silvestrov. Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras. Journal of Nonlinear Mathematical Physics, 10(sup2):95-106, 2003. URL: https://doi.org/10.2991/jnmp.2003.10.s2.7.
  48. Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 2nd edition, 1997. Google Scholar
  49. J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, 15(1):122-127, 1969. URL: https://doi.org/10.1109/TIT.1969.1054260.
  50. Tamás Mészáros. S-extremal set systems and Gröbner bases (Diploma Thesis). PhD thesis, Budapest University of Technology and Economics, 2005. Available at URL: https://sites.google.com/view/tamas-meszaros/.
  51. Shay Moran and Cyrus Rashtchian. Shattered Sets and the Hilbert Function. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1-70:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2016.70.
  52. D.E. Muller. Application of Boolean algebra to switching circuit design and to error detection. Transactions of the I.R.E. Professional Group on Electronic Computers, EC-3(3):6-12, 1954. URL: https://doi.org/10.1109/IREPGELC.1954.6499441.
  53. Rasmus Refslund Nielsen. List decoding of linear block codes. Ph.d. thesis, Technical University of Denmark, 2001. Available at URL: https://orbit.dtu.dk/files/3028444/List%20decoding%20of%20linear%20block%20codes.pdf.
  54. Niels Erik Nörlund. Vorlesungen über Differenzenrechnung. Springer Berlin, 1924. Google Scholar
  55. R. Pellikaan and Xin-Wen Wu. List decoding of q-ary Reed-Muller codes. IEEE Transactions on Information Theory, 50(4):679-682, 2004. URL: https://doi.org/10.1109/TIT.2004.825043.
  56. W. Peterson. Encoding and error-correction procedures for the Bose-Chaudhuri codes. IRE Transactions on Information Theory, 6(4):459-470, 1960. URL: https://doi.org/10.1109/TIT.1960.1057586.
  57. I. Reed. A class of multiple-error-correcting codes and the decoding scheme. Transactions of the IRE Professional Group on Information Theory, 4(4):38-49, 1954. URL: https://doi.org/10.1109/TIT.1954.1057465.
  58. I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal of the Society for Industrial and Applied Mathematics, 8(2):300-304, 1960. URL: https://doi.org/10.1137/0108018.
  59. C.H. Richardson. An Introduction to the Calculus of Finite Differences. D. Van Nostrand Company, Inc., New York, 1954. Google Scholar
  60. Steven Roman. The Umbral Calculus. Dover Publications, 2005. Google Scholar
  61. Noga Ron-Zewi, S. Venkitesh, and Mary Wootters. Efficient List Decoding of Polynomial Ideal Codes with Optimal List Size. arXiv Preprint, 2024. URL: https://doi.org/10.48550/arXiv.2401.14517.
  62. Eugene Spiegel and Christopher O'Donnell. Incidence Algebras. CRC Press, 1997. Google Scholar
  63. Shashank Srivastava. Improved List Size for Folded Reed-Solomon Codes. arXiv Preprint, 2024. URL: https://doi.org/10.48550/arXiv.2410.09031.
  64. J.F. Steffensen. Interpolation. The Williams & Wilkins Company, Baltimore, 1927. Google Scholar
  65. Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity, 13(1):180-193, 1997. URL: https://doi.org/10.1006/jcom.1997.0439.
  66. Itzhak Tamo. Tighter list-size bounds for list-decoding and recovery of folded Reed-Solomon and multiplicity codes. IEEE Transactions on Information Theory (Early Access), pages 1-1, 2024. URL: https://doi.org/10.1109/TIT.2024.3402171.
  67. L. Welch. Error Correction for Algebraic Block Codes. IEEE Int. Symp. Inform. Theory, 1983. URL: https://cir.nii.ac.jp/crid/1573668924281711104.
  68. E. Weldon. New generalizations of the Reed-Muller codes-II: Nonprimitive codes. IEEE Transactions on Information Theory, 14(2):199-205, 1968. URL: https://doi.org/10.1109/TIT.1968.1054128.
  69. J.M. Wozencraft. List Decoding. Quarterly Progress Report, Research Lab of Electronics, MIT, 48:90-95, 1958. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail