A recent breakthrough in computer-assisted mathematics showed that every set of 30 points in the plane in general position (i.e., no three points on a common line) contains an empty convex hexagon. Heule and Scheucher solved this problem with a combination of geometric insights and automated reasoning techniques by constructing CNF formulas ϕ_n, with O(n⁴) clauses, such that if ϕ_n is unsatisfiable then every set of n points in general position must contain an empty convex hexagon. An unsatisfiability proof for n = 30 was then found with a SAT solver using 17 300 CPU hours of parallel computation. In this paper, we formalize and verify this result in the Lean theorem prover. Our formalization covers ideas in discrete computational geometry and SAT encoding techniques by introducing a framework that connects geometric objects to propositional assignments. We see this as a key step towards the formal verification of other SAT-based results in geometry, since the abstractions we use have been successfully applied to similar problems. Overall, we hope that our work sets a new standard for the verification of geometry problems relying on extensive computation, and that it increases the trust the mathematical community places in computer-assisted proofs.
@InProceedings{subercaseaux_et_al:LIPIcs.ITP.2024.35, author = {Subercaseaux, Bernardo and Nawrocki, Wojciech and Gallicchio, James and Codel, Cayden and Carneiro, Mario and Heule, Marijn J. H.}, title = {{Formal Verification of the Empty Hexagon Number}}, booktitle = {15th International Conference on Interactive Theorem Proving (ITP 2024)}, pages = {35:1--35:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-337-9}, ISSN = {1868-8969}, year = {2024}, volume = {309}, editor = {Bertot, Yves and Kutsia, Temur and Norrish, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.35}, URN = {urn:nbn:de:0030-drops-207633}, doi = {10.4230/LIPIcs.ITP.2024.35}, annote = {Keywords: Empty Hexagon Number, Discrete Computational Geometry, Erd\H{o}s-Szekeres} }
Feedback for Dagstuhl Publishing