Graphical Rewriting for Diagrammatic Reasoning in Monoidal Categories in Lean4 (Short Paper)

Author Sam Ezeh



PDF
Thumbnail PDF

File

LIPIcs.ITP.2024.41.pdf
  • Filesize: 0.7 MB
  • 8 pages

Document Identifiers

Author Details

Sam Ezeh
  • Durham University, UK

Cite AsGet BibTex

Sam Ezeh. Graphical Rewriting for Diagrammatic Reasoning in Monoidal Categories in Lean4 (Short Paper). In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 41:1-41:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ITP.2024.41

Abstract

We present Untangle, a Lean4 extension for Visual Studio Code that displays string diagrams for morphisms inside monoidal categories, allowing users to rewrite expressions by clicking on natural transformations and morphisms in the string diagram. When the the user manipulates the string diagram by clicking on natural transformations in the Graphical User Interface, it attempts to generate relevant tactics to apply which it then inserts into the editor, allowing the user to prove equalities visually by diagram rewriting.

Subject Classification

ACM Subject Classification
  • Theory of computation → Interactive proof systems
  • Human-centered computing → Graphical user interfaces
Keywords
  • Interactive theorem proving
  • Lean4
  • Graphical User Interface

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. John Baez and Mike Stay. Physics, topology, logic and computation: a Rosetta Stone. Springer, 2011. Google Scholar
  2. Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for higher-dimensional rewriting. Logical Methods in Computer Science, 14, 2018. Google Scholar
  3. Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String diagram rewrite theory ii: Rewriting with symmetric monoidal structure. Mathematical Structures in Computer Science, 32(4):511-541, 2022. Google Scholar
  4. Cole Comfort, Antonin Delpeuch, and Jules Hedges. Sheet diagrams for bimonoidal categories. arXiv preprint arXiv:2010.13361, 2020. Google Scholar
  5. Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: a proof assistant for finitely-presented globular n-categories. arXiv preprint arXiv:2402.13179, 2024. Google Scholar
  6. Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a quadratic equivalence algorithm. Logical Methods in Computer Science, 18, 2022. Google Scholar
  7. Sam Ezeh. Dignissimus/untangle: Graphical rewriting for diagrammatic reasoning in monoidal categories in lean4, 2024. Software (visited on 2024-08-19). URL: https://github.com/dignissimus/Untangle.
  8. André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in Mathematics, 88(1):55-112, 1991. URL: https://doi.org/10.1016/0001-8708(91)90003-P.
  9. Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic reasoning. In Automated Deduction-CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pages 326-336. Springer, 2015. Google Scholar
  10. Daniel Marsden. Category theory using string diagrams. arXiv preprint arXiv:1401.7220, 2014. Google Scholar
  11. Yuma Mizuno. Feat: String diagram widget by yuma-mizuno (pull request #10581) leanprover-community/mathlib4, February 2024. URL: https://github.com/leanprover-community/mathlib4/pull/10581.
  12. Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28, pages 625-635, Cham, 2021. Springer International Publishing. Google Scholar
  13. Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner. An Extensible User Interface for Lean 4. In Adam Naumowicz and René Thiemann, editors, 14th International Conference on Interactive Theorem Proving (ITP 2023), volume 268 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITP.2023.24.
  14. Katherine Ye, Wode Ni, Max Krieger, Dor Ma'ayan, Jenna Wise, Jonathan Aldrich, Jonathan Sunshine, and Keenan Crane. Penrose: From mathematical notation to beautiful diagrams. ACM Trans. Graph., 39(4), 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail