A regular language is k-piecewise testable if it is a finite boolean combination of languages of the form Sigma^* a_1 Sigma^* ... Sigma^* a_n Sigma^*, where a_i in Sigma and 0 <= n <= k. Given a DFA A and k >= 0, it is an NL-complete problem to decide whether the language L(A) is piecewise testable and, for k >= 4, it is coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable, then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs.
@InProceedings{masopust:LIPIcs.MFCS.2016.67, author = {Masopust, Tom\'{a}s}, title = {{Piecewise Testable Languages and Nondeterministic Automata}}, booktitle = {41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)}, pages = {67:1--67:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-016-3}, ISSN = {1868-8969}, year = {2016}, volume = {58}, editor = {Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.67}, URN = {urn:nbn:de:0030-drops-64799}, doi = {10.4230/LIPIcs.MFCS.2016.67}, annote = {Keywords: automata, logics, languages, k-piecewise testability, nondeterminism} }
Feedback for Dagstuhl Publishing