Document

# Induced Embeddings into Hamming Graphs

## File

LIPIcs.MFCS.2017.28.pdf
• Filesize: 0.51 MB
• 15 pages

## Cite As

Martin Milanic, Peter Mursic, and Marcelo Mydlarz. Induced Embeddings into Hamming Graphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.MFCS.2017.28

## Abstract

Let d be a positive integer. Can a given graph G be realized in R^d so that vertices are mapped to distinct points, two vertices being adjacent if and only if the corresponding points lie on a common line that is parallel to some axis? Graphs admitting such realizations have been studied in the literature for decades under different names. Peterson asked in [Discrete Appl. Math., 2003] about the complexity of the recognition problem. While the two-dimensional case corresponds to the class of line graphs of bipartite graphs and is well-understood, the complexity question has remained open for all higher dimensions. In this paper, we answer this question. We establish the NP-completeness of the recognition problem for any fixed dimension, even in the class of bipartite graphs. To do this, we strengthen a characterization of induced subgraphs of 3-dimensional Hamming graphs due to Klavžar and Peterin. We complement the hardness result by showing that for some important classes of perfect graphs –including chordal graphs and distance-hereditary graphs– the minimum dimension of the Euclidean space in which the graph can be realized, or the impossibility of doing so, can be determined in linear time.
##### Keywords
• gridline graph
• Hamming graph
• induced embedding
• NP-completeness
• chordal graph

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Martin Aigner. The uniqueness of the cubic lattice graph. J. Combinatorial Theory, 6:282-297, 1969.
2. Lowell W. Beineke, Izak Broere, and Michael A. Henning. Queens graphs. Discrete Math., 206(1-3):63-75, 1999.
3. Jean-Claude Bermond, Marie-Claude Heydemann, and Dominique Sotteau. Line graphs of hypergraphs. I. Discrete Math., 18(3):235-241, 1977.
4. Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
5. Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Math., 177(1-3):9-16, 1997.
6. Hajo J. Broersma, Elias Dahlhaus, and Ton Kloks. Algorithms for the treewidth and minimum fill-in of HHD-free graphs. In Graph-theoretic concepts in computer science (Berlin, 1997), volume 1335 of Lecture Notes in Comput. Sci., pages 109-117. Springer, Berlin, 1997.
7. Gustav Burosch and Pier Vittorio Ceccherini. On the Cartesian dimensions of graphs. J. Combin. Inform. System Sci., 19(1-2):35-45, 1994. International Conference on Graphs and Hypergraphs (Varenna, 1991).
8. L. Sunil Chandran, Rogers Mathew, Deepak Rajendraprasad, and Roohani Sharma. Product dimension of forests and bounded treewidth graphs. Electron. J. Combin., 20(3):Paper 42, 14, 2013.
9. Gary Theodore Chartrand. GRAPHS AND THEIR ASSOCIATED LINE-GRAPHS. ProQuest LLC, Ann Arbor, MI, 1964. Thesis (Ph.D.)-Michigan State University.
10. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Ann. of Math. (2), 164(1):51-229, 2006.
11. Curtis R. Cook. Further characterizations of cubic lattice graphs. Discrete Math., 4:129-138, 1973.
12. Curtis R. Cook. A note on the exceptional graph of the cubic lattice graph characterization. J. Combinatorial Theory Ser. B, 14:132-136, 1973.
13. Curtis R. Cook. Representations of graphs by n-tuples. In Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pages 303-316. Congressus Numerantium, No. X, Winnipeg, Man., 1974. Utilitas Math.
14. Curtis R. Cook, B. Devadas Acharya, and V. Mishra. Adjacency graphs. In Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pages 317-331. Congressus Numerantium, No. X. Utilitas Math., Winnipeg, Man., 1974.
15. Alexander K. Dewdney. The embedding dimension of a graph. Ars Combin., 9:77-90, 1980.
16. Thomas A. Dowling. Note on: "A characterization of cubic lattice graphs". J. Combinatorial Theory, 5:425-426, 1968.
17. Feodor F. Dragan and Falk Nicolai. LexBFS-orderings and powers of HHD-free graphs. Int. J. Comput. Math., 71(1):35-56, 1999.
18. Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. LexBFS-orderings and powers of graphs. In Graph-theoretic concepts in computer science (Cadenabbia, 1996), volume 1197 of Lecture Notes in Comput. Sci., pages 166-180. Springer, Berlin, 1997.
19. Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. Powers of HHD-free graphs. Int. J. Comput. Math., 69(3-4):217-242, 1998.
20. David Eppstein. The lattice dimension of a graph. European J. Combin., 26(5):585-592, 2005.
21. Anthony B. Evans, Garth Isaak, and Darren A. Narayan. Representations of graphs modulo n. Discrete Math., 223(1-3):109-123, 2000.
22. Shannon L. Fitzpatrick and Richard J. Nowakowski. The strong isometric dimension of finite reflexive graphs. Discuss. Math. Graph Theory, 20(1):23-38, 2000.
23. Alan Frieze, Jon Kleinberg, R. Ravi, and Warren Debany. Line-of-sight networks. Combin. Probab. Comput., 18(1-2):145-163, 2009.
24. Ronald L. Graham and Peter M. Winkler. On isometric embeddings of graphs. Trans. Amer. Math. Soc., 288(2):527-536, 1985.
25. Vladimir A. Gurvich and Mikhail A. Temkin. Cellular perfect graphs. Dokl. Akad. Nauk, 326(2):227-232, 1992.
26. F. Harary and C. Holzmann. Line graphs of bipartite graphs. Rev. Soc. Mat. Chile, 1:19-22, 1974.
27. Frank Harary. Cubical graphs and cubical dimensions. Comput. Math. Appl., 15(4):271-275, 1988.
28. Stephen T. Hedetniemi. Graphs of (0, 1)-matrices. In Recent Trends in Graph Theory (Proc. Conf., New York, 1970), pages 157-171. Lecture Notes in Mathematics, Vol. 186. Springer, Berlin, 1971.
29. Marie-Claude Heydemann and Dominique Sotteau. Line-graphs of hypergraphs. II. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq. Math. Soc. János Bolyai, pages 567-582. North-Holland, Amsterdam-New York, 1978.
30. Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718-720, 1981.
31. Beverly Jamison and Stephan Olariu. On the semi-perfect elimination. Adv. in Appl. Math., 9(3):364-376, 1988.
32. Janja Jerebic and Sandi Klavžar. On induced and isometric embeddings of graphs into the strong product of paths. Discrete Math., 306(13):1358-1363, 2006.
33. Sandi Klavžar and Iztok Peterin. Characterizing subgraphs of Hamming graphs. J. Graph Theory, 49(4):302-312, 2005.
34. Sandi Klavžar, Iztok Peterin, and Sara Sabrina Zemljič. Hamming dimension of a graph - the case of Sierpiński graphs. European J. Combin., 34(2):460-473, 2013.
35. Martin Kochol. Snarks without small cycles. J. Combin. Theory Ser. B, 67(1):34-47, 1996.
36. Luděk Kučera, Jaroslav Nešetřil, and Aleš Pultr. Complexity of dimension three and some related edge-covering characteristics of graphs. Theoret. Comput. Sci., 11(1):93-106, 1980.
37. Renu Laskar. A characterization of cubic lattice graphs. J. Combinatorial Theory, 3:386-401, 1967.
38. Van Bang Le and Nguyen Ngoc Tuy. The square of a block graph. Discrete Math., 310(4):734-741, 2010.
39. László Lovász, Jaroslav Nešetřil, and Aleš Pultr. On a product dimension of graphs. J. Combin. Theory Ser. B, 29(1):47-67, 1980.
40. J. Nešetřil and Aleš Pultr. A Dushnik-Miller type dimension of graphs and its complexity. In Fundamentals of computation theory (Proc. Internat. Conf., Poznań-Kórnik, 1977), pages 482-493. Lecture Notes in Comput. Sci., Vol. 56. Springer, Berlin, 1977.
41. Jaroslav Nešetřil and Vojtěch Rödl. A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of a graph. Discrete Math., 23(1):49-55, 1978.
42. Stavros D. Nikolopoulos and Leonidas Palios. Recognizing HH-free, HHD-free, and Welsh-Powell opposition graphs. Discrete Math. Theor. Comput. Sci., 8(1):65-82, 2006.
43. Stavros D. Nikolopoulos and Leonidas Palios. An O(nm)-time certifying algorithm for recognizing HHD-free graphs. Theoret. Comput. Sci., 452:117-131, 2012.
44. Stephan Olariu. Results on perfect graphs. PhD thesis, School of Computer Science, McGill University, Montreal, 1986.
45. Dale Peterson. Gridline graphs and higher dimensional extensions. Technical report, RUTCOR, Rutgers University, 1995.
46. Dale Peterson. Gridline graphs: a review in two dimensions and an extension to higher dimensions. Discrete Appl. Math., 126(2-3):223-239, 2003.
47. Svatopluk Poljak and Aleš Pultr. Representing graphs by means of strong and weak products. Comment. Math. Univ. Carolin., 22(3):449-466, 1981.
48. Svatopluk Poljak, Vojtěch Rödl, and Aleš Pultr. On a product dimension of bipartite graphs. J. Graph Theory, 7(4):475-486, 1983.
49. Pavan Sangha and Michele Zito. Finding large independent sets in line of sight networks. In Daya Ram Gaur and N. S. Narayanaswamy, editors, Algorithms and Discrete Applied Mathematics - Third International Conference, CALDAM 2017, Sancoale, Goa, India, February 16-18, 2017, Proceedings, volume 10156 of Lecture Notes in Computer Science, pages 332-343. Springer, 2017.
50. William Staton and G. Clifton Wingard. On line graphs of bipartite graphs. Util. Math., 53:183-187, 1998.
51. Douglas B. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.