Dybjer and Setzer introduced the definitional principle of inductive-recursively defined families - i.e. of families (U : Set, T : U -> D) such that the inductive definition of U may depend on the recursively defined T --- by defining a type DS D E of codes. Each c : DS D E defines a functor [c] : Fam D -> Fam E, and (U, T) = \mu [c] : Fam D is exhibited as the initial algebra of [c]. This paper considers the composition of DS-definable functors: Given F : Fam C -> Fam D and G : Fam D -> Fam E, is G \circ F : Fam C -> Fam E DS-definable, if F and G are? We show that this is the case if and only if powers of families are DS-definable, which seems unlikely. To construct composition, we present two new systems UF and PN of codes for inductive-recursive definitions, with UF a subsytem of DS a subsystem of PN. Both UF and PN are closed under composition. Since PN defines a potentially larger class of functors, we show that there is a model where initial algebras of PN-functors exist by adapting Dybjer-Setzer's proof for DS.
@InProceedings{ghani_et_al:LIPIcs.MFCS.2017.63, author = {Ghani, Neil and McBride, Conor and Nordvall Forsberg, Fredrik and Spahn, Stephan}, title = {{Variations on Inductive-Recursive Definitions}}, booktitle = {42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, pages = {63:1--63:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-046-0}, ISSN = {1868-8969}, year = {2017}, volume = {83}, editor = {Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.63}, URN = {urn:nbn:de:0030-drops-81184}, doi = {10.4230/LIPIcs.MFCS.2017.63}, annote = {Keywords: Type Theory, induction-recursion, initial-algebra semantics} }
Feedback for Dagstuhl Publishing