We give a deterministic algorithm for counting the number of satisfying assignments of any AC^0[oplus] circuit C of size s and depth d over n variables in time 2^(n-f(n,s,d)), where f(n,s,d) = n/O(log(s))^(d-1), whenever s = 2^o(n^(1/d)). As a consequence, we get that for each d, there is a language in E^{NP} that does not have AC^0[oplus] circuits of size 2^o(n^(1/(d+1))). This is the first lower bound in E^{NP} against AC^0[oplus] circuits that beats the lower bound of 2^Omega(n^(1/2(d-1))) due to Razborov and Smolensky for large d. Both our algorithm and our lower bounds extend to AC^0[p] circuits for any prime p.
@InProceedings{rajgopal_et_al:LIPIcs.MFCS.2018.78, author = {Rajgopal, Ninad and Santhanam, Rahul and Srinivasan, Srikanth}, title = {{Deterministically Counting Satisfying Assignments for Constant-Depth Circuits with Parity Gates, with Implications for Lower Bounds}}, booktitle = {43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)}, pages = {78:1--78:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-086-6}, ISSN = {1868-8969}, year = {2018}, volume = {117}, editor = {Potapov, Igor and Spirakis, Paul and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.78}, URN = {urn:nbn:de:0030-drops-96607}, doi = {10.4230/LIPIcs.MFCS.2018.78}, annote = {Keywords: circuit satisfiability, circuit lower bounds, polynomial method, derandomization} }
Feedback for Dagstuhl Publishing