Document Open Access Logo

Domination Above r-Independence: Does Sparseness Help?

Authors Carl Einarson, Felix Reidl



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2019.40.pdf
  • Filesize: 0.57 MB
  • 13 pages

Document Identifiers

Author Details

Carl Einarson
  • Royal Holloway, University of London, UK
Felix Reidl
  • Birkbeck, University of London, UK

Acknowledgements

We thank our anonymous reviewer for helpfully pointing out how to achieve a linear kernel in Theorem 14.

Cite AsGet BibTex

Carl Einarson and Felix Reidl. Domination Above r-Independence: Does Sparseness Help?. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.MFCS.2019.40

Abstract

Inspired by the potential of improving tractability via gap- or above-guarantee parametrisations, we investigate the complexity of Dominating Set when given a suitable lower-bound witness. Concretely, we consider being provided with a maximal r-independent set X (a set in which all vertices have pairwise distance at least r+1) along the input graph G which, for r >= 2, lower-bounds the minimum size of any dominating set of G. In the spirit of gap-parameters, we consider a parametrisation by the size of the "residual" set R := V(G) \ N[X]. Our work aims to answer two questions: How does the constant r affect the tractability of the problem and does the restriction to sparse graph classes help here? For the base case r = 2, we find that the problem is paraNP-complete even in apex- and bounded-degree graphs. For r = 3, the problem is W[2]-hard for general graphs but in FPT for nowhere dense classes and it admits a linear kernel for bounded expansion classes. For r >= 4, the parametrisation becomes essentially equivalent to the natural parameter, the size of the dominating set.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Dominating Set
  • Above Guarantee
  • Kernel
  • Bounded Expansion
  • Nowhere Dense

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs. Algorithmica, 33(4):461-493, 2002. Google Scholar
  2. J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for Dominating Set. JACM, 51:363-384, 2004. Google Scholar
  3. N. Alon, G. Gutin, E. Jung Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT Above a Tight Lower Bound. Algorithmica, 61(3):638-655, 2011. Google Scholar
  4. N. Alon and S. Gutner. Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs. Algorithmica, 54(4):544-556, 2009. Google Scholar
  5. M. Cygan, M. Pilipczuk, M. Pilipczuk, and J.O. Wojtaszczyk. On multiway cut parameterized above lower bounds. TOCT, 5(1):3, 2013. Google Scholar
  6. P.G. Drange, M. Sortland Dregi, F. V. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, F. Reidl, F. Sánchez Villaamil, S. Saurabh, S. Siebertz, and S. Sikdar. Kernelization and Sparseness: the Case of Dominating Set. In STACS, volume 47 of LIPIcs, pages 31:1-31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. Google Scholar
  7. Z. Dvořák. On distance r-dominating and 2r-independent sets in sparse graphs. CoRR, abs/1710.10010, 2017. URL: http://arxiv.org/abs/1710.10010.
  8. Zdenek Dvorak, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses of sparse graphs. J. ACM, 60(5):36:1-36:24, 2013. Google Scholar
  9. K. Eickmeyer, A. C. Giannopoulou, S. Kreutzer, O. Kwon, M. Pilipczuk, R. Rabinovich, and S. Siebertz. Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 63:1-63:14, 2017. Google Scholar
  10. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and Kernels. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 503-510, 2010. URL: http://dx.doi.org/10.1137/1.9781611973075.43.
  11. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected) dominating set on H-minor-free graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 82-93. SIAM, 2012. URL: http://dx.doi.org/10.1137/1.9781611973099.7.
  12. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs. In 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany, volume 20 of LIPIcs, pages 92-103. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2013.92.
  13. J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. Sánchez Villaamil, and S. Sikdar. Kernelization Using Structural Parameters on Sparse Graph Classes. J. Comput. Syst. Sci., 84:219-242, 2017. Google Scholar
  14. M. Grohe, S. Kreutzer, and Siebertz S. Deciding First-Order Properties of Nowhere Dense Graphs. J. ACM, 64(3):17:1-17:32, 2017. Google Scholar
  15. G. Gutin, E.J. Kim, M. Lampis, and V. Mitsou. Vertex cover problem parameterized above and below tight bounds. Theory of Computing Systems, 48(2):402-410, 2011. Google Scholar
  16. G. Gutin, E.J. Kim, M. Mnich, and A. Yeo. Betweenness parameterized above tight lower bound. Journal of Computer and System Sciences, 76(8):872-878, 2010. Google Scholar
  17. G. Gutin, A. Rafiey, S. Szeider, and A. Yeo. The linear arrangement problem parameterized above guaranteed value. Theory of Computing Systems, 41(3):521-538, 2007. Google Scholar
  18. G. Gutin, L. van Iersel, M. Mnich, and A. Yeo. All Ternary Permutation Constraint Satisfaction Problems Parameterized above Average Have Kernels with Quadratic Numbers of Variables. In Proc. of the 18th ESA, volume 6346 of Lecture Notes in Computer Science, pages 326-337. Springer, 2010. Google Scholar
  19. M. Habib, C. Paul, and L. Viennot. A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata. In STACS 98, 15th Annual Symposium on Theoretical Aspects of Computer Science, Paris, France, February 25-27, 1998, Proceedings, volume 1373 of Lecture Notes in Computer Science, pages 25-38. Springer, 1998. URL: http://dx.doi.org/10.1007/BFb0028546.
  20. D. Lichtenstein. Planar Formulae and Their Uses. SIAM J. Comput., 11(2):329-343, 1982. Google Scholar
  21. D. Lokshtanov, NS Narayanaswamy, V. Raman, MS Ramanujan, and S. Saurabh. Faster parameterized algorithms using linear programming. TALG, 11(2):15, 2014. Google Scholar
  22. M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms, 31(2):335-354, 1999. Google Scholar
  23. M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values. Journal of Computer and System Sciences, 75(2):137-153, 2009. Google Scholar
  24. J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, volume 28 of Algorithms and Combinatorics. Springer, 2012. Google Scholar
  25. G. Philip, V. Raman, and S. Sikdar. Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms, 9(1), 2012. Google Scholar
  26. F. Reidl. Structural sparseness and complex networks. Dr., Aachen, Techn. Hochsch., Aachen, 2016. Aachen, Techn. Hochsch., Diss., 2015. Google Scholar
  27. C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8(1):85-89, 1984. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail