LIPIcs.MFCS.2019.76.pdf
- Filesize: 498 kB
- 15 pages
By fundamental results of Schützenberger, McNaughton and Papert from the 1970s, the classes of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a quantitative setting. For this, weighted automata form a general and widely studied model. We define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order logic and aperiodic polynomially ambiguous weighted automata have the same expressive power. Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or unambiguous aperiodic weighted automata. Our results hold for general weight structures, including all semirings, average computations of costs, bounded lattices, and others.
Feedback for Dagstuhl Publishing