Improved Lower Bound, and Proof Barrier, for Constant Depth Algebraic Circuits

Authors C. S. Bhargav, Sagnik Dutta, Nitin Saxena



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2022.18.pdf
  • Filesize: 0.7 MB
  • 16 pages

Document Identifiers

Author Details

C. S. Bhargav
  • Indian Institute of Technology, Kanpur, India
Sagnik Dutta
  • Chennai Mathematical Institute, Chennai, India
Nitin Saxena
  • Indian Institute of Technology, Kanpur, India

Acknowledgements

We would like to thank the anonymous reviewers of MFCS 2022 for spotting errors and providing helpful suggestions that improved the presentation.

Cite AsGet BibTex

C. S. Bhargav, Sagnik Dutta, and Nitin Saxena. Improved Lower Bound, and Proof Barrier, for Constant Depth Algebraic Circuits. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.MFCS.2022.18

Abstract

We show that any product-depth Δ algebraic circuit for the Iterated Matrix Multiplication Polynomial IMM_{n,d} (when d = O(log n/log log n)) must be of size at least n^Ω(d^{1/(φ²)^Δ}) where φ = 1.618… is the golden ratio. This improves the recent breakthrough result of Limaye, Srinivasan and Tavenas (FOCS'21) who showed a super polynomial lower bound of the form n^Ω(d^{1/4^Δ}) for constant-depth circuits. One crucial idea of the (LST21) result was to use set-multilinear polynomials where each of the sets in the underlying partition of the variables could be of different sizes. By picking the set sizes more carefully (depending on the depth we are working with), we first show that any product-depth Δ set-multilinear circuit for IMM_{n,d} (when d = O(log n)) needs size at least n^Ω(d^{1/φ^Δ}). This improves the n^Ω(d^{1/2^Δ}) lower bound of (LST21). We then use their Hardness Escalation technique to lift this to general circuits. We also show that our lower bound cannot be improved significantly using these same techniques. For the specific two set sizes used in (LST21), they showed that their lower bound cannot be improved. We show that for any d^o(1) set sizes (out of maximum possible d), the scope for improving our lower bound is minuscule: there exists a set-multilinear circuit that has product-depth Δ and size almost matching our lower bound such that the value of the measure used to prove the lower bound is maximum for this circuit. This results in a barrier to further improvement using the same measure.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • polynomials
  • lower bounds
  • algebraic circuits
  • proof barrier
  • fibonacci numbers

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 67-75, 2008. URL: https://doi.org/10.1109/FOCS.2008.32.
  2. Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoret. Comput. Sci., 22(3):317-330, 1983. URL: https://doi.org/10.1016/0304-3975(83)90110-X.
  3. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig. URL: https://doi.org/10.1007/978-3-662-03338-8.
  4. Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity and beyond. Found. Trends Theor. Comput. Sci., 6(1-2):front matter, 1-138 (2011), 2010. URL: https://doi.org/10.1561/0400000043.
  5. Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula lower bounds for iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70-92, 2019. URL: https://doi.org/10.1137/18M1191567.
  6. Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173-1201, 2015. URL: https://doi.org/10.1137/140990280.
  7. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm at depth four. J. ACM, 61(6):Art. 33, 16, 2014. URL: https://doi.org/10.1145/2629541.
  8. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: a chasm at depth 3. SIAM J. Comput., 45(3):1064-1079, 2016. URL: https://doi.org/10.1137/140957123.
  9. Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A super-quadratic lower bound for depth four arithmetic circuits. In 35th Computational Complexity Conference, volume 169 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. 23, 31. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.23.
  10. K. A. Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput., 14(3):678-687, 1985. URL: https://doi.org/10.1137/0214050.
  11. Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials, 2012. URL: https://eccc.weizmann.ac.il/report/2012/081/.
  12. Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower bound for homogeneous depth four arithmetic formulas. SIAM J. Comput., 46(1):307-335, 2017. URL: https://doi.org/10.1137/151002423.
  13. Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for regular arithmetic formulas. In Symposium on Theory of Computing (STOC). ACM - Association for Computing Machinery, June 2014. URL: https://doi.org/10.1145/2591796.2591847.
  14. Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound for depth three arithmetic circuits. In 43rd International Colloquium on Automata, Languages, and Programming, volume 55 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 33, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.33.
  15. Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of depth-four formulas with low individual degree. Theory Comput., 14:Paper No. 16, 46, 2018. URL: https://doi.org/10.4086/toc.2018.v014a016.
  16. Pascal Koiran. Arithmetic circuits: the chasm at depth four gets wider. Theoret. Comput. Sci., 448:56-65, 2012. URL: https://doi.org/10.1016/j.tcs.2012.03.041.
  17. Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits. In 55th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2014, pages 364-373. IEEE Computer Soc., Los Alamitos, CA, 2014. URL: https://doi.org/10.1109/FOCS.2014.46.
  18. Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas: it’s all about the top fan-in. SIAM J. Comput., 44(6):1601-1625, 2015. URL: https://doi.org/10.1137/140999220.
  19. Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit lower bounds. to appear in CCC, 2022. URL: https://eccc.weizmann.ac.il/report/2022/064/.
  20. Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 804-814, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00083.
  21. Meena Mahajan. Algebraic complexity classes. In Perspectives in computational complexity, volume 26 of Progr. Comput. Sci. Appl. Logic, pages 51-75. Birkhäuser/Springer, Cham, 2014. URL: https://doi.org/10.1007/978-3-319-05446-9.
  22. Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Comput. Complexity, 6(3):217-234, 1995. URL: https://doi.org/10.1007/BF01294256.
  23. Ran Raz. Separation of multilinear circuit and formula size. Theory Comput., 2:121-135, 2006. URL: https://doi.org/10.4086/toc.2006.v002a006.
  24. Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM, 56(2):Art. 8, 17, 2009. URL: https://doi.org/10.1145/1502793.1502797.
  25. Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory Comput., 6:135-177, 2010. URL: https://doi.org/10.4086/toc.2010.v006a007.
  26. Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github Survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey.
  27. Wolfgang M. Schmidt. Diophantine approximations and Diophantine equations, volume 1467 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1991. URL: https://doi.org/10.1007/BFb0098246.
  28. Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and interpolation problems. Comput. Complexity, 6(4):301-311, 1996/97. URL: https://doi.org/10.1007/BF01270384.
  29. Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero. Comput. Complexity, 10(1):1-27, 2001. URL: https://doi.org/10.1007/PL00001609.
  30. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207-388 (2010), 2009. URL: https://doi.org/10.1561/0400000039.
  31. Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In Mathematical foundations of computer science 2013, volume 8087 of Lecture Notes in Comput. Sci., pages 813-824. Springer, Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-40313-2_71.
  32. Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-commutative formula lower bounds for iterated matrix multiplication. In STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 416-425. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520044.
  33. Sébastien Tavenas, Srikanth Srinivasan, and Nutan Limaye. On the partial derivative method applied to lopsided set-multilinear polynomials. to appear in CCC, 2022. URL: https://eccc.weizmann.ac.il/report/2022/090/.
  34. L. G. Valiant. Completeness classes in algebra. In Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, Ga., 1979), pages 249-261. ACM, New York, 1979. URL: https://doi.org/10.1145/800135.804419.
  35. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983. URL: https://doi.org/10.1137/0212043.