Membership Problems in Finite Groups

Authors Markus Lohrey , Andreas Rosowski, Georg Zetzsche



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2022.71.pdf
  • Filesize: 0.74 MB
  • 16 pages

Document Identifiers

Author Details

Markus Lohrey
  • Universität Siegen, Germany
Andreas Rosowski
  • Universität Siegen, Germany
Georg Zetzsche
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Cite AsGet BibTex

Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership Problems in Finite Groups. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 71:1-71:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.MFCS.2022.71

Abstract

We show that the subset sum problem, the knapsack problem and the rational subset membership problem for permutation groups are NP-complete. Concerning the knapsack problem we obtain NP-completeness for every fixed n ≥ 3, where n is the number of permutations in the knapsack equation. In other words: membership in products of three cyclic permutation groups is NP-complete. This sharpens a result of Luks [Eugene M. Luks, 1991], which states NP-completeness of the membership problem for products of three abelian permutation groups. We also consider the context-free membership problem in permutation groups and prove that it is PSPACE-complete but NP-complete for a restricted class of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number. Our upper bounds hold for black box groups. The results for context-free membership problems in permutation groups yield new complexity bounds for various intersection non-emptiness problems for DFAs and a single context-free grammar.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • algorithms for finite groups
  • intersection non-emptiness problems
  • knapsack problems in groups

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf. On the complexity of intersection non-emptiness for star-free language classes. In Proceedings of the 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of LIPIcs, pages 34:1-34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34.
  2. Mohamed Faouzi Atig and Pierre Ganty. Approximating petri net reachability along context-free traces. In Proceedings of the 31st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, volume 13 of LIPIcs, pages 152-163. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152.
  3. László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 684-697. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897542.
  4. László Babai, Robert Beals, Jin-Yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative equations over commuting matrices. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1996, pages 498-507. ACM/SIAM, 1996. Google Scholar
  5. László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987, pages 409-420. ACM, 1987. URL: https://doi.org/10.1145/28395.28439.
  6. László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, FOCS 1984, pages 229-240. IEEE Computer Society, 1984. URL: https://doi.org/10.1109/SFCS.1984.715919.
  7. Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub- and superword closure of CFLs: Descriptional and computational complexity. In Proceedings of the 9th International Conference on Language and Automata Theory and Applications, LATA 2015, volume 8977 of Lecture Notes in Computer Science, pages 473-485. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-15579-1_37.
  8. Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, and Igor Potapov. Matrix equations and Hilbert’s tenth problem. International Journal of Algebra and Computation, 18(8):1231-1241, 2008. URL: https://doi.org/10.1142/S0218196708004925.
  9. Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A characterization of wreath products where knapsack is decidable. In Proceeding of the 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, volume 187 of LIPIcs, pages 11:1-11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.11.
  10. Jean-Camille Birget, Stuart Margolis, John Meakin, and Pascal Weil. PSPACE-complete problems for subgroups of free groups and inverse finite automata. Theoretical Computer Science, 242(1-2):247-281, 2000. URL: https://doi.org/10.1016/S0304-3975(98)00225-4.
  11. Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of intersecting finite automata having few final states. Computational Complexity, 25(4):775-814, 2016. URL: https://doi.org/10.1007/s00037-014-0089-9.
  12. Michal Chytil and Burkhard Monien. Caterpillars and context-free languages. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS 1990, volume 415 of Lecture Notes in Computer Science, pages 70-81. Springer, 1990. URL: https://doi.org/10.1007/3-540-52282-4_33.
  13. Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the Association for Computing Machinery, 18(1):4-18, 1971. URL: https://doi.org/10.1145/321623.321625.
  14. Mateus de Oliveira Oliveira and Michael Wehar. On the fine grained complexity of finite automata non-emptiness of intersection. In Proceedings of the 24th International Conference Developments in Language Theory, DLT 2020, volume 12086 of Lecture Notes in Computer Science, pages 69-82. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-48516-0_6.
  15. Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Computing least fixed points of probabilistic systems of polynomials. In 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010, volume 5 of LIPIcs, pages 359-370. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. URL: https://doi.org/10.4230/LIPIcs.STACS.2010.2468.
  16. Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem: A simple and direct automaton construction. Information Processing Letters, 111(12):614-619, 2011. URL: https://doi.org/10.1016/j.ipl.2011.03.019.
  17. Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asynchronous shared-memory systems. In Proceedings of the 25th International Conference on Computer Aided Verification, CAV 2013, volume 8044 of Lecture Notes in Computer Science, pages 124-140. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39799-8_8.
  18. Javier Esparza, Antonín Kucera, and Stefan Schwoon. Model checking LTL with regular valuations for pushdown systems. Information and Computation, 186(2):355-376, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00139-1.
  19. Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler numbers. In Proceedings of the 8th International Conference on Language and Automata Theory and Applications, LATA 2014, volume 8370 of Lecture Notes in Computer Science, pages 1-13. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-04921-2_1.
  20. Shimon Even and Oded Goldreich. The minimum-length generator sequence problem is NP-hard. Journal of Algorithms, 2(3):311-313, 1981. URL: https://doi.org/10.1016/0196-6774(81)90029-8.
  21. Michael Figelius, Moses Ganardi, Markus Lohrey, and Georg Zetzsche. The complexity of knapsack problems in wreath products. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages 126:1-126:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.126.
  22. Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in products of groups. Journal of Symbolic Computation, 2015. URL: https://doi.org/10.1016/j.jsc.2015.05.006.
  23. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, 1979. Google Scholar
  24. Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability analysis of communicating pushdown systems. In Proceedings of the 13th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2010, volume 6014 of Lecture Notes in Computer Science, pages 267-281. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-12032-9_19.
  25. Robert E. Horton. Erosional development of streams and their drainage basins: hydro-physical approach to quantitative morphology. Geological Society of America Bulletin, 56(3):275-370, 1945. URL: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
  26. Trevor Jack. On the complexity of properties of partial bijection semigroups, 2021. URL: https://doi.org/10.48550/ARXIV.2101.00324.
  27. Mark Jerrum. The complexity of finding minimum-length generator sequences. Theoretical Computer Science, 36:265-289, 1985. URL: https://doi.org/10.1016/0304-3975(85)90047-7.
  28. Mark Kambites, Pedro V. Silva, and Benjamin Steinberg. On the rational subset problem for groups. Journal of Algebra, 309(2):622-639, 2007. URL: https://doi.org/10.1016/j.jalgebra.2006.05.020.
  29. Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics, pages 138-153. American Mathematical Society, 2016. URL: https://doi.org/10.1090/conm/677.
  30. Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, FOCS 1977, pages 254-266. IEEE Computer Society, 1977. URL: https://doi.org/10.1109/SFCS.1977.16.
  31. Markus Lohrey. The rational subset membership problem for groups: a survey, pages 368-389. London Mathematical Society Lecture Note Series. Cambridge University Press, 2015. URL: https://doi.org/10.1017/CBO9781316227343.024.
  32. Markus Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545(1):390-415, 2020. URL: https://doi.org/10.1016/j.jalgebra.2019.04.008.
  33. Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership problems in finite groups, 2022. URL: https://doi.org/10.48550/ARXIV.2206.11756.
  34. Markus Lohrey and Georg Zetzsche. Knapsack in graph groups. Theory of Computing Systems, 62(1):192-246, 2018. URL: https://doi.org/10.1007/s00224-017-9808-3.
  35. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences, 25(1):42-65, 1982. URL: https://doi.org/10.1016/0022-0000(82)90009-5.
  36. Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups And Computation, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 7-10, 1991, volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 139-175. DIMACS/AMS, 1991. URL: https://doi.org/10.1090/dimacs/011/11.
  37. Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups. Mathematics of Computation, 84:987-1016, 2015. URL: https://doi.org/10.1090/S0025-5718-2014-02880-9.
  38. Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge University Press, 2003. URL: https://doi.org/10.1017/CBO9780511546549.
  39. Charles C. Sims. Computational methods in the study of permutation groups. In Computational Problems in Abstract Algebra, pages 169-183. Pergamon, 1970. URL: https://doi.org/10.1016/B978-0-08-012975-4.50020-5.
  40. Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Geological Society of America Bulletin, 63(11):1117-1142, 1952. URL: https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
  41. Joseph Swernofsky and Michael Wehar. On the complexity of intersecting regular, context-free, and tree languages. In Proceedings of the 42nd International Colloquium Automata, Languages, and Programming, Part II, ICALP 2015, volume 9135 of Lecture Notes in Computer Science, pages 414-426. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47666-6_33.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail