Modification Problems Toward Proper (Helly) Circular-Arc Graphs

Authors Yixin Cao , Hanchun Yuan, Jianxin Wang

Thumbnail PDF


  • Filesize: 0.7 MB
  • 14 pages

Document Identifiers

Author Details

Yixin Cao
  • School of Computer Science and Engineering, Central South University, Changsha, China
  • Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
Hanchun Yuan
  • School of Computer Science and Engineering, Central South University, Changsha, China
Jianxin Wang
  • School of Computer Science and Engineering, Central South University, Changsha, China

Cite AsGet BibTex

Yixin Cao, Hanchun Yuan, and Jianxin Wang. Modification Problems Toward Proper (Helly) Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


We present a 9^k ⋅ n^O(1)-time algorithm for the proper circular-arc vertex deletion problem, resolving an open problem of van ’t Hof and Villanger [Algorithmica 2013] and Crespelle et al. [Computer Science Review 2023]. Our structural study also implies parameterized algorithms for modification problems toward proper Helly circular-arc graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • proper (Helly) circular-arc graph
  • graph modification problem


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Łukasz Bożyk, Jan Derbisz, Tomasz Krawczyk, Jana Novotná, and Karolina Okrasa. Vertex deletion into bipartite permutation graphs. Algorithmica, 84(8):2271-2291, 2022. URL:
  2. Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096-1115. SIAM, 2016. Full version available at arXiv:1403.1515. URL:
  3. Yixin Cao. Unit interval editing is fixed-parameter tractable. Information and Computation, 253:109-126, 2017. A preliminary version appeared in ICALP 2015. URL:
  4. Yixin Cao, Luciano N. Grippo, and Martín D. Safe. Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection. Discrete Applied Mathematics, 216:67-83, 2017. URL:
  5. Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transactions on Algorithms, 11(3):21:1-21:35, 2015. A preliminary version appeared in SODA 2014. URL:
  6. Maria Chudnovsky and Paul D. Seymour. Claw-free graphs. III. Circular interval graphs. Journal of Combinatorial Theory, Series B, 98(4):812-834, 2008. URL:
  7. Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of parameterized algorithms and the complexity of edge modification. Computer Science Review, 48:100556, 2023. URL:
  8. Xiaotie Deng, Pavol Hell, and Jing Huang. Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM Journal on Computing, 25(2):390-403, 1996. URL:
  9. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Undergraduate texts in computer science. Springer, 2013. URL:
  10. Guillermo Durán and Min Chih Lin. Clique graphs of Helly circular arc graphs. Ars Combinatoria, 60, 2001. Google Scholar
  11. Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 18:25-66, 1967. URL:
  12. Fănică Gavril. Algorithms on circular-arc graphs. Networks, 4:357-369, 1974. URL:
  13. Bruce Hedman. Clique graphs of time graphs. Journal of Combinatorial Theory, Series B, 37(3):270-278, 1984. URL:
  14. Pavol Hell and Jing Huang. Interval bigraphs and circular arc graphs. Journal of Graph Theory, 46(4):313-327, 2004. URL:
  15. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. Preliminary versions independently presented in STOC 1978. URL:
  16. Min Chih Lin, Francisco J. Soulignac, and Jayme L. Szwarcfiter. Proper Helly circular-arc graphs. In Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, Graph Theoretic Concepts in Computer Science - WG 2007, volume 4769 of LNCS, pages 248-257. Springer, 2007. URL:
  17. Min Chih Lin, Francisco J. Soulignac, and Jayme L. Szwarcfiter. Normal Helly circular-arc graphs and its subclasses. Discrete Applied Mathematics, 161(7-8):1037-1059, 2013. URL:
  18. Fred S. Roberts. Indifference graphs. In Frank Harary, editor, Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., 1968), pages 139-146. Academic Press, New York, 1969. Google Scholar
  19. Alan C. Tucker. Structure theorems for some circular-arc graphs. Discrete Mathematics, 7(1-2):167-195, 1974. URL:
  20. Pim van 't Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845-867, 2013. URL:
  21. Gerd Wegner. Eigenschaften der Nerven homologisch-einfacher Familien im Rⁿ. PhD thesis, Universität Göttingen, 1967. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail