The Canadian Traveller Problem on Outerplanar Graphs

Authors Laurent Beaudou , Pierre Bergé , Vsevolod Chernyshev , Antoine Dailly, Yan Gerard , Aurélie Lagoutte , Vincent Limouzy , Lucas Pastor



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.19.pdf
  • Filesize: 0.83 MB
  • 16 pages

Document Identifiers

Author Details

Laurent Beaudou
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Pierre Bergé
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Vsevolod Chernyshev
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Antoine Dailly
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Yan Gerard
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Aurélie Lagoutte
  • Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
Vincent Limouzy
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Lucas Pastor
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

Cite AsGet BibTex

Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor. The Canadian Traveller Problem on Outerplanar Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.19

Abstract

We study the k-Canadian Traveller Problem, where a weighted graph G = (V,E,ω) with a source s ∈ V and a target t ∈ V are given. This problem also has a hidden input E_* ⊊ E of cardinality at most k representing blocked edges. The objective is to travel from s to t with the minimum distance. At the beginning of the walk, the blockages E_* are unknown: the traveller discovers that an edge is blocked when visiting one of its endpoints. Online algorithms, also called strategies, have been proposed for this problem and assessed with the competitive ratio, i.e., the ratio between the distance actually traversed by the traveller divided by the distance he would have traversed knowing the blockages in advance. Even though the optimal competitive ratio is 2k+1 even on unit-weighted planar graphs of treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we prove that, for any ε > 0, no strategy can achieve a competitive ratio 9-ε. Finally, we show that it is not possible to achieve a constant competitive ratio (independent of G and k) on weighted outerplanar graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Graph algorithms
Keywords
  • Canadian Traveller Problem
  • Online algorithms
  • Competitive analysis
  • Outerplanar graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. V. Aksakalli, O. F. Sahin, and I. Ari. An AO^* based exact algorithm for the canadian traveler problem. INFORMS Journal on Computing, 28(1):96-111, 2016. URL: https://doi.org/10.1287/IJOC.2015.0668.
  2. A. F. Alkaya, S. Yildirim, and V. Aksakalli. Heuristics for the Canadian Traveler Problem with neutralizations. Comput. Ind. Eng., 159:107488, 2021. URL: https://doi.org/10.1016/J.CIE.2021.107488.
  3. R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane. Inf. Comput., 106(2):234-252, 1993. URL: https://doi.org/10.1006/INCO.1993.1054.
  4. B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM, 41(1):153-180, 1994. Google Scholar
  5. A. Bar-Noy and B. Schieber. The Canadian Traveller Problem. In Proc. of ACM/SIAM SODA, pages 261-270, 1991. Google Scholar
  6. L. Beaudou, P. Bergé, V. Chernyshev, A. Dailly, Y. Gerard, A. Lagoutte, V. Limouzy, and L. Pastor. The Canadian Traveller Problem on outerplanar graphs. CoRR, abs/2403.01872, 2024. URL: https://doi.org/10.48550/arXiv.2403.01872.
  7. A. Beck and D. J. Newman. Yet more on the linear search problem. Isr. J. Math., 8(4):419-429, 1970. Google Scholar
  8. J. Becker and R. Batta. Canadian prize collection problem. Military Operations Research, 28(2):55-92, 2023. Google Scholar
  9. R. Bellman. Problem 63-9, an optimal search. SIAM review, 5(3):274-274, 1963. Google Scholar
  10. M. Bender and S. Westphal. An optimal randomized online algorithm for the k-Canadian Traveller Problem on node-disjoint paths. J. Comb. Optim., 30(1):87-96, 2015. URL: https://doi.org/10.1007/S10878-013-9634-8.
  11. P. Bergé, J. Desmarchelier, W. Guo, A. Lefebvre, A. Rimmel, and J. Tomasik. Multiple canadians on the road: minimizing the distance competitive ratio. J. Comb. Optim., 38(4):1086-1100, 2019. URL: https://doi.org/10.1007/S10878-019-00438-6.
  12. P. Bergé and L. Salaün. The influence of maximum (s, t)-cuts on the competitiveness of deterministic strategies for the Canadian Traveller Problem. Theor. Comput. Sci., 941:221-240, 2023. URL: https://doi.org/10.1016/J.TCS.2022.11.017.
  13. Z. Bnaya, A. Felner, and S. E. Shimony. Canadian traveler problem with remote sensing. In Proc. of IJCAI, pages 437-442, 2009. Google Scholar
  14. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge Univ. Press, 1998. Google Scholar
  15. H. Chan, J. Chang, H. Wu, and T. Wu. The k-Canadian Traveller Problem on Equal-Weight Graphs. Proc. of WCMCT, pages 135-137, 2015. Google Scholar
  16. E. D. Demaine, Y. Huang, C. Liao, and K. Sadakane. Canadians Should Travel Randomly. Proc. of ICALP, pages 380-391, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_32.
  17. R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  18. P. Eyerich, T. Keller, and M. Helmert. High-quality policies for the Canadian Traveler’s Problem. In Proces. of AAAI, pages 51-58. AAAI Press, 2010. URL: https://doi.org/10.1609/AAAI.V24I1.7542.
  19. D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner. Complexity of canadian traveler problem variants. Theor. Comput. Sci., 487:1-16, 2013. URL: https://doi.org/10.1016/J.TCS.2013.03.016.
  20. N. Hahn and M. Xefteris. The covering canadian traveller problem revisited. In Procs. of MFCS, volume 272 of LIPIcs, pages 53:1-53:12, 2023. URL: https://doi.org/10.4230/LIPICS.MFCS.2023.53.
  21. M.-Y. Kao, J. H. Reif, and S. T. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Information and computation, 131(1):63-79, 1996. URL: https://doi.org/10.1006/INCO.1996.0092.
  22. C. Liao and Y. Huang. The covering canadian traveller problem. Theor. Comput. Sci., 530:80-88, 2014. URL: https://doi.org/10.1016/J.TCS.2014.02.026.
  23. L. V. Lita, J. Schulte, and S. Thrun. A system for multi-agent coordination in uncertain environments. In Procs. of AGENTS, pages 21-22. ACM, 2001. URL: https://doi.org/10.1145/375735.375806.
  24. C. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theor. Comput. Sci., 84(1):127-150, 1991. URL: https://doi.org/10.1016/0304-3975(91)90263-2.
  25. D. Shiri and F. S. Salman. On the online multi-agent O-D k-Canadian Traveler Problem. J. Comb. Optim., 34(2):453-461, 2017. URL: https://doi.org/10.1007/S10878-016-0079-8.
  26. S. Westphal. A note on the k-Canadian Traveller Problem. Inform. Proces. Lett., 106(3):87-89, 2008. URL: https://doi.org/10.1016/J.IPL.2007.10.004.
  27. Y. Xu, M. Hu, B. Su, B. Zhu, and Z. Zhu. The Canadian traveller problem and its competitive analysis. J. Comb. Optim., 18(2):195-205, 2009. URL: https://doi.org/10.1007/S10878-008-9156-Y.