Structural Parameters for Dense Temporal Graphs

Authors Jessica Enright , Samuel D. Hand , Laura Larios-Jones , Kitty Meeks



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.52.pdf
  • Filesize: 0.78 MB
  • 15 pages

Document Identifiers

Author Details

Jessica Enright
  • School of Computing Science, University of Glasgow, UK
Samuel D. Hand
  • School of Computing Science, University of Glasgow, UK
Laura Larios-Jones
  • School of Computing Science, University of Glasgow, UK
Kitty Meeks
  • School of Computing Science, University of Glasgow, UK

Cite AsGet BibTex

Jessica Enright, Samuel D. Hand, Laura Larios-Jones, and Kitty Meeks. Structural Parameters for Dense Temporal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.52

Abstract

Temporal graphs provide a useful model for many real-world networks. Unfortunately, the majority of algorithmic problems we might consider on such graphs are intractable. There has been recent progress in defining structural parameters which describe tractable cases by simultaneously restricting the underlying structure and the times at which edges appear in the graph. These all rely on the temporal graph being sparse in some sense. We introduce temporal analogues of three increasingly restrictive static graph parameters - cliquewidth, modular-width and neighbourhood diversity - which take small values for highly structured temporal graphs, even if a large number of edges are active at each timestep. The computational problems solvable efficiently when the temporal cliquewidth of the input graph is bounded form a subset of those solvable efficiently when the temporal modular-width is bounded, which is in turn a subset of problems efficiently solvable when the temporal neighbourhood diversity is bounded. By considering specific temporal graph problems, we demonstrate that (up to standard complexity theoretic assumptions) these inclusions are strict.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Fixed parameter tractability
Keywords
  • Graph algorithms
  • Parameterized Algorithms
  • Temporal Graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans Adler and Isolde Adler. A note on clique-width and tree-width for structures. CoRR, abs/0806.0103, 2008. URL: https://arxiv.org/abs/0806.0103.
  2. Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos Raptopoulos. The temporal explorer who returns to the base. Journal of Computer and System Sciences, 120:179-193, September 2021. URL: https://doi.org/10.1016/j.jcss.2021.04.001.
  3. Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short symmetric instances of MAX-3SAT. Electron. Colloquium Comput. Complex., TR03-049, 2003. URL: https://arxiv.org/abs/TR03-049.
  4. Stéphane Bessy, Anthony Bonato, Jeannette C. M. Janssen, Dieter Rautenbach, and Elham Roshanbin. Burning a graph is hard. Discret. Appl. Math., 232:73-87, 2017. URL: https://doi.org/10.1016/J.DAM.2017.07.016.
  5. Anthony Bonato, Jeannette C. M. Janssen, and Elham Roshanbin. Burning a graph as a model of social contagion. In Anthony Bonato, Fan Chung Graham, and Pawel Pralat, editors, Algorithms and Models for the Web Graph - 11th International Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings, volume 8882 of Lecture Notes in Computer Science, pages 13-22. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-13123-8_2.
  6. Benjamin Merlin Bumpus and Kitty Meeks. Edge Exploration of Temporal Graphs. Algorithmica, 85(3):688-716, March 2023. URL: https://doi.org/10.1007/s00453-022-01018-7.
  7. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding Temporal Paths Under Waiting Time Constraints. Algorithmica, 83(9):2754-2802, September 2021. URL: https://doi.org/10.1007/s00453-021-00831-w.
  8. Arnaud Casteigts, Kitty Meeks, George B. Mertzios, and Rolf Niedermeier. Temporal Graphs: Structure, Algorithms, Applications (Dagstuhl Seminar 21171). Dagstuhl Reports, pages 16-46, 2021. Publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.3.16, URL: https://doi.org/10.4230/DagRep.11.3.16.
  9. Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno. Iterated Type Partitions. In Leszek Gąsieniec, Ralf Klasing, and Tomasz Radzik, editors, Combinatorial Algorithms, Lecture Notes in Computer Science, pages 195-210, Cham, 2020. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-48966-3_15.
  10. Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. Polynomial-time recognition of clique-width ≤3 graphs. Discrete Applied Mathematics, 160(6):834-865, April 2012. URL: https://doi.org/10.1016/j.dam.2011.03.020.
  11. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems, 33(2):125-150, April 2000. URL: https://doi.org/10.1007/s002249910009.
  12. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press, 1 edition, June 2012. URL: https://doi.org/10.1017/CBO9780511977619.
  13. Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars. Journal of Computer and System Sciences, 46(2):218-270, April 1993. URL: https://doi.org/10.1016/0022-0000(93)90004-G.
  14. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1):77-114, April 2000. URL: https://doi.org/10.1016/S0166-218X(99)00184-5.
  15. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer International Publishing, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  16. Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to restrict the size of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60-77, August 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.007.
  17. Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-Width is NP-Complete. SIAM Journal on Discrete Mathematics, 23(2):909-939, January 2009. URL: https://doi.org/10.1137/070687256.
  18. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. As Time Goes By: Reflections on Treewidth for Temporal Graphs. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, pages 49-77. Springer International Publishing, Cham, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0_6.
  19. Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized Algorithms for Modular-Width. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact Computation, Lecture Notes in Computer Science, pages 163-176, Cham, 2013. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-03898-8_15.
  20. T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica, 18(1):25-66, March 1967. URL: https://doi.org/10.1007/BF02020961.
  21. Robert Ganian. Using Neighborhood Diversity to Solve Hard Problems, January 2012. arXiv:1201.3091 [cs]. URL: https://doi.org/10.48550/arXiv.1201.3091.
  22. Frank Gurski. A comparison of two approaches for polynomial time algorithms computing basic graph parameters, June 2008. arXiv:0806.4073 [cs]. URL: https://doi.org/10.48550/arXiv.0806.4073.
  23. Roman Haag, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Feedback edge sets in temporal graphs. Discrete Applied Mathematics, 307:65-78, January 2022. URL: https://doi.org/10.1016/j.dam.2021.09.029.
  24. Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev., 4(1):41-59, 2010. URL: https://doi.org/10.1016/J.COSREV.2010.01.001.
  25. Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Rolf Niedermeier. Temporal interval cliques and independent sets. Theoretical Computer Science, 961:113885, June 2023. URL: https://doi.org/10.1016/j.tcs.2023.113885.
  26. Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97-125, October 2012. URL: https://www.sciencedirect.com/science/article/pii/S0370157312000841, URL: https://doi.org/10.1016/j.physrep.2012.03.001.
  27. Yasuaki Kobayashi and Yota Otachi. Parameterized complexity of graph burning. Algorithmica, 84(8):2379-2393, 2022. URL: https://doi.org/10.1007/S00453-022-00962-8.
  28. Michael Lampis. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica, 64(1):19-37, September 2012. URL: https://doi.org/10.1007/s00453-011-9554-x.
  29. Daniel Lokshtanov. Parameterized Integer Quadratic Programming: Variables and Coefficients, April 2017. arXiv:1511.00310 [cs]. URL: https://doi.org/10.48550/arXiv.1511.00310.
  30. Bernard Mans and Luke Mathieson. On the treewidth of dynamic graphs. Theoretical Computer Science, 554:217-228, October 2014. URL: https://doi.org/10.1016/j.tcs.2013.12.024.
  31. Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics, 201(1):189-241, April 1999. URL: https://doi.org/10.1016/S0012-365X(98)00319-7.
  32. George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal Network Optimization Subject to Connectivity Constraints. Algorithmica, 81(4):1416-1449, April 2019. URL: https://doi.org/10.1007/s00453-018-0478-6.
  33. George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche. Computing maximum matchings in temporal graphs. Journal of Computer and System Sciences, 137:1-19, November 2023. URL: https://doi.org/10.1016/j.jcss.2023.04.005.
  34. Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12(4):239-280, 2016. ISBN: 1542-7951 Publisher: Taylor & Francis. Google Scholar
  35. Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal Reachability Minimization: Delaying vs. Deleting. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics (LIPIcs), pages 76:1-76:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. ISSN: 1868-8969. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.76.
  36. Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming, Lecture Notes in Computer Science, pages 634-645, Berlin, Heidelberg, 2008. Springer. URL: https://doi.org/10.1007/978-3-540-70575-8_52.
  37. Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in link streams. Theoretical Computer Science, 609:245-252, January 2016. URL: https://doi.org/10.1016/j.tcs.2015.09.030.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail