Agafonov’s Theorem for Probabilistic Selectors

Authors Ulysse Léchine , Thomas Seiller , Jakob Grue Simonsen



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.67.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Ulysse Léchine
  • Université Sorbonne Paris Nord, France
Thomas Seiller
  • CNRS, Paris, France
Jakob Grue Simonsen
  • University of Copenhagen, Denmark

Cite AsGet BibTex

Ulysse Léchine, Thomas Seiller, and Jakob Grue Simonsen. Agafonov’s Theorem for Probabilistic Selectors. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.67

Abstract

A normal sequence over {0,1} is an infinite sequence for which every word of length k appears with frequency 2^{-k}. Agafonov’s eponymous theorem states that selection by a finite state selector preserves normality, i.e. if α is a normal sequence and A is a finite state selector, then the subsequence A(α) is either finite or a normal sequence. In this work, we address the following question: does this result hold when considering probabilistic selectors? We provide a partial positive answer, in the case where the probabilities involved are rational. More formally, we prove that given a normal sequence α and a rational probabilistic selector P, the selected subsequence P(α) will be a normal sequence with probability 1.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
  • Theory of computation → Probabilistic computation
  • Theory of computation → Randomness, geometry and discrete structures
Keywords
  • Normal sequences
  • probabilistic automata
  • Agafonov’s theorem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. V. N. Agafonov. Normal sequences and finite automata. Sov. Math., Dokl., 9:324-325, 1968. Originally published in Russian [Agafonov, 1968]. Google Scholar
  2. Dylan Airey and Bill Mance. Normality preserving operations for Cantor series expansions and associated fractals, i. Illinois J. Math., 59(3):531-543, 2015. Google Scholar
  3. J. Auslander and Y. N. Dowker. On disjointness of dynamical systems. Mathematical Proceedings of the Cambridge Philosophical Society, 85(3):477-491, 1979. Google Scholar
  4. Veronica Becher, Olivia Carton, and Pablo Ariel Heiber. Normality and automata. Journal of Computer and System Sciences, 81(8):1592-1613, 2015. Google Scholar
  5. Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Matem. Palermo, 27:247-271, 1909. Google Scholar
  6. A. Broglio and P. Liardet. Predictions with automata. symbolic dynamics and its applications. Contemporary Mathematics, 135:111-124, 1992. Also appeared in Proceedings of the AMS Conference in honor of R. L. Adler. New Haven CT - USA 1991. Google Scholar
  7. Yann Bugeaud. Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. Cambridge University Press, 2012. Google Scholar
  8. Olivier Carton. A direct proof of agafonov’s theorem and an extension to shift of finite type. CoRR, abs/2005.00255, 2020. URL: https://arxiv.org/abs/2005.00255.
  9. Olivier Carton. A direct proof of Agafonov’s theorem and an extension to shifts of finite type. Preprint, 2020. Google Scholar
  10. Olivier Carton and Joseph Vandehey. Preservation of normality by non-oblivious group selection. Theory of Computing Systems, 2020. Google Scholar
  11. D. G. Champernowne. The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society, s1-8(4):254-260, 1933. Google Scholar
  12. T. Kamae and B. Weiss. Normal numbers and selection rules. Israel Journal of Mathematics, pages 101-110, 1975. Google Scholar
  13. Wolfgang Merkle and Jan Reimann. Selection functions that do not preserve normality. Theory Comput. Syst., 39(5):685-697, 2006. Google Scholar
  14. Ivan Niven and H. S. Zuckerman. On the definition of normal numbers. Pacific J. Math., 1(1):103-109, 1951. Google Scholar
  15. В. Н. Araфонов. Нормальные последовательности и конечные автоматы. Докл. АН СССР, 179(2):255-256, 1968. Google Scholar
  16. Л. П. Постникова. О связи понятий коллектива Мизеса-Черча и нормальной по Бернулли последовательности знаков. Теория вероятн. и ее примен., 6(2):232-234, 1961. Google Scholar
  17. LP Postnikova. On the connection between the concepts of collectives of Mises-Church and normal Bernoulli sequences of symbols. Theory of Probability & Its Applications, 6(2):211-213, 1961. translation of [Постникова, 1961] by Eizo Nishiura. Google Scholar
  18. Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230-245, 1963. Google Scholar
  19. Claus-Peter Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Informatica, 1:345-359, 1972. Google Scholar
  20. Xiaowen Wang and Teturo Kamae. Selection rules preserving normality. Israel Journal of Mathematics, 232:427-442, 2019. Google Scholar