Algorithmic Dimensions via Learning Functions

Authors Jack H. Lutz , Andrei N. Migunov



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.72.pdf
  • Filesize: 0.68 MB
  • 13 pages

Document Identifiers

Author Details

Jack H. Lutz
  • Department of Computer Science, Iowa State University, Ames, IA, USA
Andrei N. Migunov
  • Department of Mathematics and Computer Science, Drake University, Des Moines, IA, USA

Cite AsGet BibTex

Jack H. Lutz and Andrei N. Migunov. Algorithmic Dimensions via Learning Functions. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.72

Abstract

We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of information) of infinite binary sequences in terms of the inability of learning functions having an algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative extension of the criterion that Zaffora Blando used to characterize the algorithmically random (i.e., Martin-Löf random) sequences. Our proof uses Lutz’s and Mayordomo’s respective characterizations of algorithmic dimension in terms of gales and Kolmogorov complexity.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computability
  • Theory of computation → Models of learning
Keywords
  • algorithmic dimensions
  • learning functions
  • randomness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effective strong dimension in algorithmic information and computational complexity. SIAM journal on computing, 37(3):671-705, 2007. Google Scholar
  2. Patrick Billingsley. Probability and measure. Wiley-Interscience, 1995. Google Scholar
  3. Thomas R. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., 2006. Google Scholar
  4. Rod Downey and Denis R Hirschfeldt. Algorithmic randomness. Communications of the ACM, 62(5):70-80, 2019. Google Scholar
  5. Rod Downey and Denis R Hirschfeldt. Computability and randomness. Notices of the American Mathematical Society, 66(7):1001-1012, 2019. Google Scholar
  6. Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer Science & Business Media, 2010. Google Scholar
  7. E Mark Gold. Language identification in the limit. Information and control, 10(5):447-474, 1967. Google Scholar
  8. F Hausdorff. Dimension und äußeres maß. Mathematische Annalen, 79:157-179, 1919. Google Scholar
  9. John M Hitchcock. Gales suffice for constructive dimension. Information Processing Letters, 86(1):9-12, 2003. Google Scholar
  10. Sanjay Jain, Daniel Osherson, James S Royer, Arun Sharma, et al. Systems that Learn: An Introduction to Learning Theory. MIT press, 1999. Google Scholar
  11. Leon G Kraft. A device for quantizing, grouping and coding amplitude modified pulses. Master’s thesis, Cambridge, MA, 1949. Google Scholar
  12. Jack H Lutz. Gales and the constructive dimension of individual sequences. In International Colloquium on Automata, Languages, and Programming, pages 902-913. Springer, 2000. Google Scholar
  13. Jack H Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236-1259, 2003. Google Scholar
  14. Jack H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49-79, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00187-1.
  15. Jack H Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional dimension. ACM Transactions on Computation Theory (TOCT), 10(2):1-22, 2018. Google Scholar
  16. Jack H Lutz and Neil Lutz. Who asked us? How the theory of computing answers questions about analysis. In Complexity and Approximation, pages 48-56. Springer, 2020. Google Scholar
  17. Jack H Lutz and Elvira Mayordomo. Algorithmic fractal dimensions in geometric measure theory. In Handbook of Computability and Complexity in Analysis, pages 271-302. Springer, 2021. Google Scholar
  18. Jack H Lutz, Renrui Qi, and Liang Yu. The point-to-set principle and the dimensions of Hamel bases. Computability, 13(2):105-112, 2024. URL: https://doi.org/10.3233/COM-210383.
  19. Neil Lutz. Fractal intersections and products via algorithmic dimension. ACM Transactions on Computation Theory (TOCT), 13(3):1-15, 2021. Google Scholar
  20. Neil Lutz and Donald M Stull. Projection theorems using effective dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), 2018. Google Scholar
  21. Neil Lutz and Donald M Stull. Bounding the dimension of points on a line. Information and Computation, 275:104601, 2020. Google Scholar
  22. Per Martin-Löf. The definition of random sequences. Information and Control, 9(6):602-619, 1966. Google Scholar
  23. Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002. Google Scholar
  24. Daniel Osherson and Scott Weinstein. Recognizing strong random reals. The Review of Symbolic Logic, 1(1):56-63, 2008. Google Scholar
  25. Daniel N Osherson, Michael Stob, and Scott Weinstein. Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. The MIT Press, 1986. Google Scholar
  26. Claus-Peter Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5(3):246-258, 1971. URL: https://doi.org/10.1007/BF01694181.
  27. Theodore Slaman. Kolmogorov complexity and capacitability of dimension. Report No. 21/2021. Mathematisches Forschungsinstitut Oberwolfach, 2021. Google Scholar
  28. Tomasz Steifer. A note on the learning-theoretic characterizations of randomness and convergence. The Review of Symbolic Logic, pages 1-16, 2021. Google Scholar
  29. Dennis Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica, 153(1):259-277, 1984. Google Scholar
  30. Claude Tricot. Two definitions of fractional dimension. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 91, pages 57-74. Cambridge University Press, 1982. Google Scholar
  31. Jean Ville. Etude critique de la notion de collectif. Gauthier-Villars Paris, 1939. Google Scholar
  32. Francesca Zaffora Blando. A learning-theoretic characterisation of Martin-Löf randomness and Schnorr randomness. The Review of Symbolic Logic, 14(2):531-549, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail