Synthesis of Robust Optimal Real-Time Systems

Authors Benjamin Monmege , Julie Parreaux, Pierre-Alain Reynier



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.74.pdf
  • Filesize: 0.81 MB
  • 15 pages

Document Identifiers

Author Details

Benjamin Monmege
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Julie Parreaux
  • University of Warsaw, Poland
Pierre-Alain Reynier
  • Aix Marseille Univ, CNRS, LIS, Marseille, France

Cite As Get BibTex

Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Synthesis of Robust Optimal Real-Time Systems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 74:1-74:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.MFCS.2024.74

Abstract

Weighted Timed Games (WTGs for short) are widely used to describe real-time controller synthesis problems, but they rely on an unrealistic perfect measure of time elapse. In order to produce strategies tolerant to timing imprecisions, we consider a notion of robustness, expressed as a parametric semantics, first introduced for timed automata. WTGs are two-player zero-sum games played in a weighted timed automaton in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. The opponent player, in addition to controlling some of the locations, can perturb delays chosen by Min. The robust value problem asks, given some threshold, whether there exists a positive perturbation and a strategy for Min ensuring to reach the target, with an accumulated weight below the threshold, whatever the opponent does.
We provide in this article the first decidability result for this robust value problem. More precisely, we show that we can compute the robust value function, in a parametric way, for the class of divergent WTGs (this class has been introduced previously to obtain decidability of the (classical) value problem in WTGs without bounding the number of clocks). To this end, we show that the robust value is the fixpoint of some operators, as is classically done for value iteration algorithms. We then combine in a very careful way two representations: piecewise affine functions introduced in [Alur et al., 2004] to analyse WTGs, and shrunk Difference Bound Matrices (shrunk DBMs for short) considered in [Sankur et al., 2011] to analyse robustness in timed automata. The crux of our result consists in showing that using this representation, the operator of value iteration can be computed for infinitesimally small perturbations. Last, we also study qualitative decision problems and close an open problem on robust reachability, showing it is EXPTIME-complete for general WTGs.

Subject Classification

ACM Subject Classification
  • Software and its engineering → Formal software verification
  • Theory of computation → Algorithmic game theory
Keywords
  • Weighted timed games
  • Algorithmic game theory
  • Robustness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed games. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP'04), volume 3142 of LNCS, pages 122-133. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27836-8_13.
  2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183-235, 1994. URL: https://doi.org/10.1016/0304-3975(94)90010-8.
  3. Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed automata. In Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages 19-30. Springer, 1999. URL: https://doi.org/10.1007/3-540-48983-5_6.
  4. Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the optimal reachability problem of weighted timed automata. Formal Methods in System Design, 31(2):135-175, 2007. Google Scholar
  5. Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on weighted timed automata. Information Processing Letters, 98(5):188-194, 2006. Google Scholar
  6. Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in priced timed game automata. In FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, LNCS, pages 148-160, Berlin, Heidelberg, 2005. Springer. URL: https://doi.org/10.1007/978-3-540-30538-5_13.
  7. Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed games. In Proceedings of the 26th International Conference on Concurrency Theory (CONCUR'15), volume 42 of LIPIcs, pages 311-324. Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2015.311.
  8. Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust model-checking of linear-time properties in timed automata. In Proceedings of the 7th Latin American Conference on Theoretical Informatics (LATIN'06), LNCS, pages 238-249. Springer, 2006. URL: https://doi.org/10.1007/11682462_25.
  9. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust weighted timed automata and games. In Proceedings of the 11th International Conference on Formal Modelling and Analysis of Timed Systems (FORMATS'13), volume 8053 of LNCS, pages 31-46. Springer, August 2013. URL: https://doi.org/10.1007/978-3-642-40229-6_3.
  10. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in timed automata: Game-based approach. Journal of Theoretical Computer Science (TCS), 563:43-74, 2015. Google Scholar
  11. Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies. In Formal Modeling and Analysis of Timed Systems, LNCS, pages 49-64. Springer, 2005. URL: https://doi.org/10.1007/11603009_5.
  12. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege. Simple priced timed games are not that simple. In Proceedings of the 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'15), volume 45 of LIPIcs, pages 278-292. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2015.278.
  13. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege. One-clock priced timed games with negative weights. Logical Methods in Computer Science, 18(3), August 2022. URL: https://doi.org/10.46298/lmcs-18(3:17)2022.
  14. Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Benjamin Monmege, and Ashutosh Trivedi. Adding negative prices to priced timed games. In Proceedings of the 25th International Conference on Concurrency Theory (CONCUR'14), volume 8704 of LNCS, pages 560-575. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44584-6_38.
  15. Damien Busatto-Gaston. Symbolic controller synthesis for timed systems: robustness and optimality. PhD thesis, Aix-Marseille Université, 2019. Google Scholar
  16. Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal reachability in divergent weighted timed games. In Proceedings of the 20th International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2017), LNCS, pages 162-178. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-54458-7_10.
  17. Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Symbolic approximation of weighted timed games. In Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'18), volume 122 of LIPIcs, pages 28:1-28:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, December 2018. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28.
  18. Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal controller synthesis for timed systems. Log. Methods Comput. Sci., 19(1), 2023. URL: https://doi.org/10.46298/LMCS-19(1:20)2023.
  19. Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier, and Ocan Sankur. Robust controller synthesis in timed Büchi automata: A symbolic approach. In Proceedings of the 31st International Conference (CAV 2019), volume 11561 of LNCS, pages 572-590. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-25540-4_33.
  20. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robustness and implementability of timed automata. In Proceedings of the International Conference on Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems (FORMATS'2004), LNCS, pages 118-133. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30206-3_10.
  21. Shibashis Guha, Shankara Narayanan Krishna, Lakshmi Manasa, and Ashutosh Trivedi. Revisiting robustness in priced timed games. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015), LIPIcs, pages 261-277. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/LIPIcs.FSTTCS.2015.261.
  22. Marcin Jurdzinski and Ashutosh Trivedi. Reachability-time games on timed automata. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), volume 4596 of LNCS, pages 838-849. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-73420-8_72.
  23. Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Playing Stochastically in Weighted Timed Games to Emulate Memory. In Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of LIPIcs, pages 137:1-137:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.137.
  24. Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Decidability of one-clock weighted timed games with arbitrary weights. In Proceedings of the 33rd International Conference on Concurrency Theory (CONCUR 2022), volume 243 of LIPIcs, pages 15:1-15:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.CONCUR.2022.15.
  25. Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Synthesis of robust optimal strategies in weighted timed games. CoRR, abs/2403.06921, 2024. URL: https://doi.org/10.48550/arXiv.2403.06921.
  26. Youssouf Oualhadj, Pierre-Alain Reynier, and Ocan Sankur. Probabilistic robust timed games. In Proceedings of the 25th International Conference on Concurrency Theory (CONCUR'14), volume 8704 of LNCS, pages 203-217. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44584-6_15.
  27. Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems, 10:87-113, 2000. URL: https://doi.org/10.1023/A:1008387132377.
  28. Ocan Sankur. Robustness in timed automata : analysis, synthesis, implementation. (Robustesse dans les automates temporisés : analyse, synthèse, implémentation). PhD thesis, École normale supérieure de Cachan, Paris, France, 2013. Google Scholar
  29. Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking Timed Automata. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011), volume 13 of LIPIcs, pages 90-102. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2011.90.
  30. Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust controller synthesis in timed automata. In Proceedings of the 24th International Conference on Concurrency Theory (CONCUR 2013), volume 8052 of LNCS, pages 546-560. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40184-8_38.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail