In a separability problem, we are given two sets K and L from a class 𝒞, and we want to decide whether there exists a set S from a class 𝒮 such that K ⊆ S and S ∩ L = ∅. In this case, we speak of separability of sets in 𝒞 by sets in 𝒮. We study two types of separability problems. First, we consider separability of semilinear sets (i.e. subsets of ℕ^d for some d) by sets definable by quantifier-free monadic Presburger formulas (or equivalently, the recognizable subsets of ℕ^d). Here, a formula is monadic if each atom uses at most one variable. Second, we consider separability of languages of Parikh automata by regular languages. A Parikh automaton is a machine with access to counters that can only be incremented, and have to meet a semilinear constraint at the end of the run. Both of these separability problems are known to be decidable with elementary complexity. Our main results are that both problems are coNP-complete. In the case of semilinear sets, coNP-completeness holds regardless of whether the input sets are specified by existential Presburger formulas, quantifier-free formulas, or semilinear representations. Our results imply that recognizable separability of rational subsets of Σ* × ℕ^d (shown decidable by Choffrut and Grigorieff) is coNP-complete as well. Another application is that regularity of deterministic Parikh automata (where the target set is specified using a quantifier-free Presburger formula) is coNP-complete as well.
@InProceedings{collins_et_al:LIPIcs.MFCS.2025.38, author = {Collins, Elias Rojas and K\"{o}cher, Chris and Zetzsche, Georg}, title = {{The Complexity of Separability for Semilinear Sets and Parikh Automata}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {38:1--38:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.38}, URN = {urn:nbn:de:0030-drops-241457}, doi = {10.4230/LIPIcs.MFCS.2025.38}, annote = {Keywords: Vector Addition System, Separability, Regular Language} }
Feedback for Dagstuhl Publishing