A periodic temporal graph, in its simplest form, is a graph in which every edge appears exactly once in the first Δ time steps, and then it reappears recurrently every Δ time steps, where Δ is a given period length. This model offers a natural abstraction of transportation networks where each transportation link connects two destinations periodically. From a network design perspective, a crucial task is to assign the time-labels on the edges in a way that optimizes some criterion. In this paper we introduce a very natural optimality criterion that captures how the temporal distances of all vertex pairs are "stretched", compared to their physical distances, i.e. their distances in the underlying static (non-temporal) graph. Given a static graph G, the task is to assign to each edge one time-label between 1 and Δ such that, in the resulting periodic temporal graph with period Δ, the duration of the fastest temporal path from any vertex u to any other vertex v is at most α times the distance between u and v in G. Here, the value of α measures how much the shortest paths are allowed to be stretched once we assign the periodic time-labels. Our results span three different directions: First, we provide a series of approximation and NP-hardness results. Second, we provide approximation and fixed-parameter algorithms. Among them, we provide a simple polynomial-time algorithm (the radius-algorithm) which always guarantees an approximation strictly smaller than Δ, and which also computes the optimum stretch in some cases. Third, we consider a parameterized local search extension of the problem where we are given the temporal labeling of the graph, but we are allowed to change the time-labels of at most k edges; for this problem we prove that it is W[2]-hard but admits an XP algorithm with respect to k.
@InProceedings{mertzios_et_al:LIPIcs.MFCS.2025.75, author = {Mertzios, George B. and Molter, Hendrik and Morawietz, Nils and Spirakis, Paul G.}, title = {{Temporal Graph Realization with Bounded Stretch}}, booktitle = {50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)}, pages = {75:1--75:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-388-1}, ISSN = {1868-8969}, year = {2025}, volume = {345}, editor = {Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.75}, URN = {urn:nbn:de:0030-drops-241829}, doi = {10.4230/LIPIcs.MFCS.2025.75}, annote = {Keywords: Temporal graph, periodic temporal labeling, fastest temporal path, graph realization, temporal connectivity, stretch} }
Feedback for Dagstuhl Publishing