RandSolomon: Optimally Resilient Random Number Generator with Deterministic Termination

Authors Luciano Freitas de Souza, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, Nicolas Quero, Petr Kuznetsov

Thumbnail PDF


  • Filesize: 1.11 MB
  • 16 pages

Document Identifiers

Author Details

Luciano Freitas de Souza
  • CEA LIST, Université de Paris-Saclay, Gif-sur-Yvette, France
  • LTCI, Télécom Paris, Institut Polytechnique de Paris, France
Andrei Tonkikh
  • LTCI, Télécom Paris, Institut Polytechnique de Paris, France
Sara Tucci-Piergiovanni
  • CEA LIST, Université de Paris-Saclay, Gif-sur-Yvette, France
Renaud Sirdey
  • CEA LIST, Université de Paris-Saclay, Gif-sur-Yvette, France
Oana Stan
  • CEA LIST, Université de Paris-Saclay, Gif-sur-Yvette, France
Nicolas Quero
  • CEA LIST, Université de Paris-Saclay, Gif-sur-Yvette, France
Petr Kuznetsov
  • LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Cite AsGet BibTex

Luciano Freitas de Souza, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, Nicolas Quero, and Petr Kuznetsov. RandSolomon: Optimally Resilient Random Number Generator with Deterministic Termination. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Multi-party random number generation is a key building-block in many practical protocols. While straightforward to solve when all parties are trusted to behave correctly, the problem becomes much more difficult in the presence of faults. This paper presents RandSolomon, a partially synchronous protocol that allows a system of N processes to produce an unpredictable common random number shared by correct participants. The protocol is optimally resilient, as it allows up to f = ⌊(N-1)/3⌋ of the processes to behave arbitrarily, ensures deterministic termination and, contrary to prior solutions, does not, at any point, expect faulty processes to be responsive.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Byzantine Fault Tolerance
  • Partially Synchronous
  • Deterministic Termination
  • Randomness Beacon
  • Multi Party Computation


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-Piergiovanni. Dissecting tendermint. In International Conference on Networked Systems, pages 166-182. Springer, 2019. Google Scholar
  2. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable encryption. In Annual International Cryptology Conference, pages 535-552. Springer, 2007. Google Scholar
  3. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the 13th ACM conference on Computer and communications security, pages 390-399, 2006. Google Scholar
  4. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Annual international cryptology conference, pages 757-788. Springer, 2018. Google Scholar
  5. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International conference on the theory and application of cryptology and information security, pages 514-532. Springer, 2001. Google Scholar
  6. Ilja N Bronshtein and Konstantin A Semendyayev. Handbook of mathematics. Springer Science & Business Media, 2013. Google Scholar
  7. Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv preprint, 2018. URL: http://arxiv.org/abs/1807.04938.
  8. Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and randomness beacons in ethereum. IEEE Security and Privacy on the blockchain (IEEE S&B), 2017. Google Scholar
  9. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous broadcast protocols. In Annual International Cryptology Conference, pages 524-541. Springer, 2001. Google Scholar
  10. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. Cryptology ePrint Archive, Report 2000/034, 2000. URL: https://eprint.iacr.org/2000/034.
  11. Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public entities. Cryptology ePrint Archive, Report 2017/216, 2017. URL: https://eprint.iacr.org/2017/216.
  12. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 66-98. Springer, 2018. Google Scholar
  13. Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009. Google Scholar
  14. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP '17, pages 51-68, New York, NY, USA, 2017. Association for Computing Machinery. URL: https://doi.org/10.1145/3132747.3132757.
  15. Andreas Haeberlen and Petr Kuznetsov. The fault detection problem. In International Conference On Principles Of Distributed Systems, pages 99-114. Springer, 2009. Google Scholar
  16. Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series, consensus system. CoRR, abs/1805.04548, 2018. URL: http://arxiv.org/abs/1805.04548.
  17. MA Khan, S Afzal, and R Manzoor. Hardware implementation of shortened (48, 38) reed solomon forward error correcting code. In 7th International Multi Topic Conference, 2003. INMIC 2003., pages 90-95. IEEE, 2003. Google Scholar
  18. Mikhail Krasnoselskii, Grigorii Melnikov, and Yury Yanovich. No-dealer: Byzantine fault-tolerant random number generator. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 568-573. IEEE, 2020. Google Scholar
  19. Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting codes, volume 16. Elsevier, 1977. Google Scholar
  20. Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes. Communications of the ACM, 24(9):583-584, 1981. Google Scholar
  21. Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th annual symposium on foundations of computer science (cat. No. 99CB37039), pages 120-130. IEEE, 1999. Google Scholar
  22. Thanh Nguyen-Van, Tuan Nguyen-Anh, Tien-Dat Le, Minh-Phuoc Nguyen-Ho, Tuong Nguyen-Van, Nhat-Quang Le, and Khuong Nguyen-An. Scalable distributed random number generation based on homomorphic encryption. In 2019 IEEE International Conference on Blockchain (Blockchain), pages 572-579. IEEE, 2019. Google Scholar
  23. Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Annual International Cryptology Conference, pages 433-444. Springer, 1991. Google Scholar
  24. Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the society for industrial and applied mathematics, 8(2):300-304, 1960. Google Scholar
  25. Arto Salomaa. Public-key cryptography. Springer Science & Business Media, 2013. Google Scholar
  26. Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hydrand: Practical continuous distributed randomness. Cryptology ePrint Archive, Report 2018/319, 2018. URL: https://eprint.iacr.org/2018/319.
  27. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic voting. In Annual International Cryptology Conference, pages 148-164. Springer, 1999. Google Scholar
  28. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979. Google Scholar
  29. Richard Singleton. Maximum distance q-nary codes. IEEE Transactions on Information Theory, 10(2):116-118, 1964. Google Scholar
  30. Alexandre Soro and Jérôme Lacan. FNT-based Reed-Solomon erasure codes. In 2010 7th IEEE Consumer Communications and Networking Conference, pages 1-5. IEEE, 2010. Google Scholar
  31. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP), pages 444-460. Ieee, 2017. Google Scholar
  32. Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 347-356, 2019. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail