Near-Optimal Dispersion on Arbitrary Anonymous Graphs

Authors Ajay D. Kshemkalyani , Gokarna Sharma



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2021.8.pdf
  • Filesize: 0.78 MB
  • 19 pages

Document Identifiers

Author Details

Ajay D. Kshemkalyani
  • University of Illinois at Chicago, IL, USA
Gokarna Sharma
  • Kent State University, OH, USA

Cite AsGet BibTex

Ajay D. Kshemkalyani and Gokarna Sharma. Near-Optimal Dispersion on Arbitrary Anonymous Graphs. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.OPODIS.2021.8

Abstract

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree Δ, we consider the problem of dispersing k ≤ n robots (or tokens) positioned initially arbitrarily on one or more nodes of the graph to exactly k different nodes of the graph, one on each node. The objective is to simultaneously minimize time to achieve dispersion and memory requirement at each robot. If all k robots are positioned initially on a single node, depth first search (DFS) traversal solves this problem in O(min{m,kΔ}) time with Θ(log(k+Δ)) bits at each robot. However, if robots are positioned initially on multiple nodes, the best previously known algorithm solves this problem in O(min{m,kΔ}⋅ log 𝓁) time storing Θ(log(k+Δ)) bits at each robot, where 𝓁 ≤ k/2 is the number of multiplicity nodes in the initial configuration. In this paper, we present a novel multi-source DFS traversal algorithm solving this problem in O(min{m,kΔ}) time with Θ(log(k+Δ)) bits at each robot, improving the time bound of the best previously known algorithm by O(log 𝓁) and matching asymptotically the single-source DFS traversal bounds. This is the first algorithm for dispersion that is optimal in both time and memory in arbitrary anonymous graphs of constant degree, Δ = O(1). Furthermore, the result holds in both synchronous and asynchronous settings.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Computing methodologies → Distributed algorithms
  • Computer systems organization → Robotics
Keywords
  • Distributed algorithms
  • Multi-agent systems
  • Mobile robots
  • Local communication
  • Dispersion
  • Exploration
  • Time and memory complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. John Augustine and William K. Moses Jr. Dispersion of mobile robots: A study of memory-time trade-offs. In ICDCN, pages 1:1-1:10, 2018. Google Scholar
  2. Evangelos Bampas, Leszek Gasieniec, Nicolas Hanusse, David Ilcinkas, Ralf Klasing, and Adrian Kosowski. Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers. In DISC, pages 423-435, 2009. Google Scholar
  3. L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering of autonomous mobile robots in a grid. In IPDPS, pages 1-8, 2009. Google Scholar
  4. Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg. Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms, 4(4):42:1-42:18, August 2008. Google Scholar
  5. Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer auf der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and Daniel Wonisch. A new approach for analyzing convergence algorithms for mobile robots. In ICALP, pages 650-661, 2011. Google Scholar
  6. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. Google Scholar
  7. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput., 7(2):279-301, October 1989. Google Scholar
  8. Archak Das, Kaustav Bose, and Buddhadeb Sau. Memory optimal dispersion by anonymous mobile robots. In CALDAM, pages 426-439, 2021. Google Scholar
  9. Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, and Przemyslaw Uznański. Fast collaborative graph exploration. Inf. Comput., 243(C):37-49, August 2015. Google Scholar
  10. Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic rendezvous in graphs. Algorithmica, 46(1):69-96, 2006. URL: https://doi.org/10.1007/s00453-006-0074-2.
  11. Yotam Elor and Alfred M. Bruckstein. Uniform multi-agent deployment on a ring. Theor. Comput. Sci., 412(8-10):783-795, 2011. Google Scholar
  12. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012. URL: https://doi.org/10.2200/S00440ED1V01Y201208DCT010.
  13. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Mobile Entities, volume 1 of Theoretical Computer Science and General Issues. Springer International Publishing, 2019. Google Scholar
  14. Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree exploration. Networks, 48(3):166-177, 2006. Google Scholar
  15. Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration by a finite automaton. Theor. Comput. Sci., 345(2-3):331-344, November 2005. Google Scholar
  16. Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theor. Comput. Sci., 399(1-2):141-156, 2008. URL: https://doi.org/10.1016/j.tcs.2008.02.010.
  17. Ajay D. Kshemkalyani and Faizan Ali. Fast graph exploration by a mobile robot. In First IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE, pages 115-118, 2018. URL: https://doi.org/10.1109/AIKE.2018.00025.
  18. Ajay D. Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on graphs. In ICDCN, pages 218-227, 2019. Google Scholar
  19. Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Fast dispersion of mobile robots on arbitrary graphs. In ALGOSENSORS, pages 23-40, 2019. Google Scholar
  20. Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile robots in the global communication model. In ICDCN, pages 12:1-12:10, 2020. Google Scholar
  21. Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile robots on grids. In WALCOM, pages 183-197, 2020. Google Scholar
  22. Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Efficient dispersion of mobile robots on dynamic graphs. In ICDCS, pages 732-742, 2020. Google Scholar
  23. Artur Menc, Dominik Pajak, and Przemyslaw Uznanski. Time and space optimality of rotor-router graph exploration. Inf. Process. Lett., 127:17-20, 2017. Google Scholar
  24. Anisur Rahaman Molla and William K. Moses Jr. Dispersion of mobile robots: The power of randomness. In TAMC, pages 481-500, 2019. Google Scholar
  25. Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Efficient dispersion on an anonymous ring in the presence of weak byzantine robots. In ALGOSENSORS, pages 154-169, 2020. Google Scholar
  26. Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Byzantine dispersion on graphs. In IPDPS, pages 1-10, 2021. Google Scholar
  27. Debasish Pattanayak, Gokarna Sharma, and Partha Sarathi Mandal. Dispersion of mobile robots tolerating faults. In ICDCN, pages 133-138, 2021. Google Scholar
  28. Pavan Poudel and Gokarna Sharma. Time-optimal uniform scattering in a grid. In ICDCN, pages 228-237, 2019. Google Scholar
  29. Pavan Poudel and Gokarna Sharma. Fast uniform scattering on a grid for asynchronous oblivious robots. In SSS, pages 211-228, 2020. Google Scholar
  30. Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In PODC, pages 415-424, 2016. Google Scholar
  31. Takahiro Shintaku, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Efficient dispersion of mobile agents without global knowledge. In SSS, pages 280-294, 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail