Document Open Access Logo

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Authors Shir Cohen, Idit Keidar, Alexander Spiegelman



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2022.18.pdf
  • Filesize: 0.71 MB
  • 21 pages

Document Identifiers

Author Details

Shir Cohen
  • Technion, Haifa, Israel
Idit Keidar
  • Technion, Haifa, Israel
Alexander Spiegelman
  • Aptos, San Francisco, CA, USA

Cite AsGet BibTex

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 18:1-18:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.OPODIS.2022.18

Abstract

Byzantine Agreement (BA) is a key component in many distributed systems. While Dolev and Reischuk have proven a long time ago that quadratic communication complexity is necessary for worst-case runs, the question of what can be done in practically common runs with fewer failures remained open. In this paper we present the first Byzantine Broadcast algorithm with O(n(f+1)) communication complexity in a model with resilience of n = 2t+1, where 0 ≤ f ≤ t is the actual number of process failures in a run. And for BA with strong unanimity, we present the first optimal-resilience algorithm that has linear communication complexity in the failure-free case and a quadratic cost otherwise.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Byzantine Agreement
  • Byzantine Broadcast
  • Adaptive communication

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience, one-message bft devil. CoRR, abs/1803.05069, 2018. URL: http://arxiv.org/abs/1803.05069.
  2. Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 337-346, 2019. Google Scholar
  3. Eugene S Amdur, Samuel M Weber, and Vassos Hadzilacos. On the message complexity of binary byzantine agreement under crash failures. Distributed Computing, 5(4):175-186, 1992. Google Scholar
  4. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International conference on the theory and application of cryptology and information security, pages 514-532. Springer, 2001. Google Scholar
  5. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous broadcast protocols. In Annual International Cryptology Conference, pages 524-541. Springer, 2001. Google Scholar
  6. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219-246, 2005. Google Scholar
  7. Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic asynchronous byzantine agreement whp. In 34th International Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. Google Scholar
  8. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Conference on the Theory and Application of Cryptographic Techniques, pages 120-127. Springer, 1987. Google Scholar
  9. Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. Journal of the ACM (JACM), 32(1):191-204, 1985. Google Scholar
  10. Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine agreement. Journal of the ACM (JACM), 37(4):720-741, 1990. Google Scholar
  11. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP '17, New York, NY, USA, 2017. ACM. URL: https://doi.org/10.1145/3132747.3132757.
  12. Vassos Hadzilacos and Joseph Y Halpern. Message-optimal protocols for byzantine agreement. Mathematical systems theory, 26(1):41-102, 1993. Google Scholar
  13. Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine agreement. In 35th International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. Google Scholar
  14. Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for linear byzantine smr. In 34th International Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. Google Scholar
  15. Victor Shoup. Practical threshold signatures. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 207-220. Springer, 2000. Google Scholar
  16. Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. Google Scholar
  17. Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Strengthened fault tolerance in byzantine fault tolerant replication. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), pages 205-215. IEEE, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail