Near-Optimal Resilient Labeling Schemes

Authors Keren Censor-Hillel , Einav Huberman



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2024.35.pdf
  • Filesize: 0.93 MB
  • 22 pages

Document Identifiers

Author Details

Keren Censor-Hillel
  • Department of Computer Science, Technion, Haifa, Israel
Einav Huberman
  • Department of Computer Science, Technion, Haifa, Israel

Acknowledgements

We thank Alkida Balliu and Dennis Olivetti for useful discussions about the state of the art for computing ruling sets.

Cite As Get BibTex

Keren Censor-Hillel and Einav Huberman. Near-Optimal Resilient Labeling Schemes. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.OPODIS.2024.35

Abstract

Labeling schemes are a prevalent paradigm in various computing settings. In such schemes, an oracle is given an input graph and produces a label for each of its nodes, enabling the labels to be used for various tasks. Fundamental examples in distributed settings include distance labeling schemes, proof labeling schemes, advice schemes, and more. This paper addresses the question of what happens in a labeling scheme if some labels are erased, e.g., due to communication loss with the oracle or hardware errors. We adapt the notion of resilient proof-labeling schemes of Fischer, Oshman, Shamir [OPODIS 2021] and consider resiliency in general labeling schemes. A resilient labeling scheme consists of two parts - a transformation of any given labeling to a new one, executed by the oracle, and a distributed algorithm in which the nodes can restore their original labels given the new ones, despite some label erasures.
Our contribution is a resilient labeling scheme that can handle F such erasures. Given a labeling of 𝓁 bits per node, it produces new labels with multiplicative and additive overheads of O(1) and O(log(F)), respectively. The running time of the distributed reconstruction algorithm is O(F+(𝓁⋅F)/log n) in the Congest model. 
This improves upon what can be deduced from the work of Bick, Kol, and Oshman [SODA 2022], for non-constant values of F. It is not hard to show that the running time of our distributed algorithm is optimal, making our construction near-optimal, up to the additive overhead in the label size.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Labeling schemes
  • Erasures

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 1199-1218, 2012. URL: https://doi.org/10.1145/2213977.2214084.
  2. Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancestors: a survey and a new distributed algorithm. In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures, pages 258-264, 2002. URL: https://doi.org/10.1145/564870.564914.
  3. Yagel Ashkenazi, Ran Gelles, and Amir Leshem. Noisy beeping networks. Inf. Comput., 289(Part):104925, 2022. URL: https://doi.org/10.1016/J.IC.2022.104925.
  4. Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed Δ-coloring plays hide-and-seek. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 464-477. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520027.
  5. Aviv Bar-Natan, Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Fault-tolerant distance labeling for planar graphs. Theoretical Computer Science, 918:48-59, 2022. URL: https://doi.org/10.1016/J.TCS.2022.03.020.
  6. Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling schemes. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pages 315-324, 2015. URL: https://doi.org/10.1145/2767386.2767421.
  7. Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2426-2458. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.97.
  8. Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor. Comput. Sci., 811:112-124, 2020. URL: https://doi.org/10.1016/J.TCS.2018.08.020.
  9. Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pages 445-455, 2021. URL: https://doi.org/10.1145/3465084.3467929.
  10. Yuval Emek and Yuval Gil. Twenty-two new approximate proof labeling schemes. In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 20:1-20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.DISC.2020.20.
  11. Yuval Emek, Yuval Gil, and Shay Kutten. Locally Restricted Proof Labeling Schemes. In Christian Scheideler, editor, 36th International Symposium on Distributed Computing (DISC 2022), volume 246 of LIPIcs, pages 20:1-20:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2022.20.
  12. Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhoň. Local distributed rounding: Generalized to mis, matching, set cover, and beyond. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4409-4447. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH168.
  13. Laurent Feuilloley. Introduction to local certification. Discrete Mathematics & Theoretical Computer Science, 23(Distributed Computing and Networking), 2021. URL: https://doi.org/10.46298/DMTCS.6280.
  14. Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes. J. Parallel Distributed Comput., 166:149-165, 2022. URL: https://doi.org/10.1016/J.JPDC.2022.04.015.
  15. Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry. Redundancy in distributed proofs. Distributed Computing, 34:113-132, 2021. URL: https://doi.org/10.1007/S00446-020-00386-Z.
  16. Orr Fischer, Rotem Oshman, and Dana Shamir. Explicit space-time tradeoffs for proof labeling schemes in graphs with small separators. In Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors, 25th International Conference on Principles of Distributed Systems (OPODIS 2021), LIPIcs, pages 21:1-21:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2021.21.
  17. Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed computing with advice: information sensitivity of graph coloring. Distributed Computing, 21:395-403, 2009. URL: https://doi.org/10.1007/S00446-008-0076-Y.
  18. Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Communication algorithms with advice. Journal of Computer and System Sciences, 76(3-4):222-232, 2010. URL: https://doi.org/10.1016/J.JCSS.2009.07.002.
  19. Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local mst computation with short advice. In Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures, pages 154-160, 2007. URL: https://doi.org/10.1145/1248377.1248402.
  20. Emanuele G Fusco and Andrzej Pelc. Trade-offs between the size of advice and broadcasting time in trees. In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, pages 77-84, 2008. URL: https://doi.org/10.1145/1378533.1378545.
  21. Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Distributed Computing, 16:111-120, 2003. URL: https://doi.org/10.1007/S00446-002-0073-5.
  22. Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs. Journal of algorithms, 53(1):85-112, 2004. URL: https://doi.org/10.1016/J.JALGOR.2004.05.002.
  23. Paweł Gawrychowski, Fabian Kuhn, Jakub Łopuszański, Konstantinos Panagiotou, and Pascal Su. Labeling schemes for nearest common ancestors through minor-universal trees. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2604-2619. SIAM, 2018. Google Scholar
  24. Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii: Low-congestion shortcuts, mst, and min-cut. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 202-219. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH16.
  25. Mika Göös and Jukka Suomela. Locally checkable proofs. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages 159-168, 2011. URL: https://doi.org/10.1145/1993806.1993829.
  26. Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing. Theory of Computing, 12(1):1-33, 2016. URL: https://doi.org/10.4086/TOC.2016.V012A019.
  27. Rani Izsak and Zeev Nutov. A note on labeling schemes for graph connectivity. Information processing letters, 112(1-2):39-43, 2012. URL: https://doi.org/10.1016/J.IPL.2011.10.001.
  28. Taisuke Izumi, Yuval Emek, Tadashi Wadayama, and Toshimitsu Masuzawa. Deterministic fault-tolerant connectivity labeling scheme. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages 190-199, 2023. URL: https://doi.org/10.1145/3583668.3594584.
  29. Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions on information theory, 18(5):652-656, 1972. URL: https://doi.org/10.1109/TIT.1972.1054893.
  30. Michal Katz, Nir A Katz, Amos Korman, and David Peleg. Labeling schemes for flow and connectivity. SIAM Journal on Computing, 34(1):23-40, 2004. URL: https://doi.org/10.1137/S0097539703433912.
  31. Gillat Kol, Rotem Oshman, and Raghuvansh R Saxena. Interactive distributed proofs. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 255-264, 2018. URL: https://dl.acm.org/citation.cfm?id=3212771.
  32. Amos Korman. Labeling schemes for vertex connectivity. ACM Transactions on Algorithms (TALG), 6(2):1-10, 2010. URL: https://doi.org/10.1145/1721837.1721855.
  33. Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, pages 26-34, 2006. URL: https://doi.org/10.1145/1146381.1146389.
  34. Amos Korman and Shay Kutten. On distributed verification. In Distributed Computing and Networking: 8th International Conference, ICDCN 2006, Guwahati, India, December 27-30, 2006. Proceedings 8, pages 100-114. Springer, 2006. URL: https://doi.org/10.1007/11947950_12.
  35. Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput., 22(4):215-233, 2010. URL: https://doi.org/10.1007/S00446-010-0095-3.
  36. Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  37. Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for distributed verification. In Shantanu Das and Sébastien Tixeuil, editors, Structural Information and Communication Complexity - 24th International Colloquium, SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised Selected Papers, volume 10641 of Lecture Notes in Computer Science, pages 53-70. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-72050-0_4.
  38. Merav Parter and Asaf Petruschka. Õptimal dual vertex failure connectivity labels. In Christian Scheideler, editor, 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 32:1-32:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.DISC.2022.32.
  39. Merav Parter, Asaf Petruschka, and Seth Pettie. Connectivity labeling for multiple vertex failures. arXiv preprint, 2023. URL: https://doi.org/10.48550/arXiv.2307.06276.
  40. Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: Broadcast, unicast and in between. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 1-17. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-69084-1_1.
  41. David Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33(3):167-176, 2000. URL: https://doi.org/10.1002/(SICI)1097-0118(200003)33:3%3C167::AID-JGT7%3E3.0.CO;2-5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail