Simulating 3-Symbol Turing Machines with SIMD||DNA

Authors David Doty , Aaron Ong

Thumbnail PDF


  • Filesize: 0.93 MB
  • 15 pages

Document Identifiers

Author Details

David Doty
  • University of California, Davis, CA, USA
Aaron Ong
  • University of California, Davis, CA, USA

Cite AsGet BibTex

David Doty and Aaron Ong. Simulating 3-Symbol Turing Machines with SIMD||DNA. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


SIMD||DNA [Wang et al., 2019] is a model of DNA strand displacement allowing parallel in-memory computation on DNA storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine with a SIMD||DNA program, giving a more direct and efficient route to general-purpose information manipulation on DNA storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [Wang et al., 2019]. We also develop software ( that can simulate SIMD||DNA programs and produce SVG figures.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
  • DNA storage
  • strand displacement
  • parallel computation


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin Strauss. A DNA-based archival storage system. In ASPLOS 2016: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, pages 637-649, 2016. Google Scholar
  2. Tonglin Chen, Arnav Solanki, and Marc Riedel. Parallel Pairwise Operations on Data Stored in DNA: Sorting, Shifting, and Searching. In DNA 27: 27th International Conference on DNA Computing and Molecular Programming, volume 205, pages 11:1-11:21, 2021. URL:
  3. George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage in DNA. Science, 337(6102):1628-1628, 2012. Google Scholar
  4. Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1-40, 2004. Google Scholar
  5. Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In ICALP 2006: International Colloquium on Automata, Languages, and Programming, pages 132-143. Springer, 2006. Google Scholar
  6. Turlough Neary and Damien Woods. Small fast universal Turing machines. Theoretical Computer Science, 362(1-3):171-195, 2006. Google Scholar
  7. Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher N Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart, Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and Karin Strauss. Random access in large-scale DNA data storage. Nature Biotechnology, 36(3):242, 2018. Google Scholar
  8. Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation with DNA polymers. In International Workshop on DNA-Based Computers, pages 123-140. Springer, 2010. Google Scholar
  9. Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid logic circuits. Science, 314(5805):1585-1588, 2006. Google Scholar
  10. SIMD||DNA simulator. Source code:, 2021.
  11. S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali Athreya, Behnam Enghiad, Alvaro Gonzalo Hernandez, Christopher J Fields, Jean-Pierre Leburton, David Soloveichik, Huimin Zhao, and Olgica Milenkovic. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature Communications, 11(1):1-10, 2020. Google Scholar
  12. Boya Wang, Cameron Chalk, and David Soloveichik. SIMD||DNA: Single instruction, multiple data computation with DNA strand displacement cascades. In DNA 2019: International Conference on DNA Computing and Molecular Programming, pages 219-235, 2019. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail