Document Open Access Logo

Parameterized Temporal Exploration Problems

Authors Thomas Erlebach , Jakob T. Spooner



PDF
Thumbnail PDF

File

LIPIcs.SAND.2022.15.pdf
  • Filesize: 0.84 MB
  • 17 pages

Document Identifiers

Author Details

Thomas Erlebach
  • Department of Computer Science, Durham University, UK
Jakob T. Spooner
  • School of Computing and Mathematical Sciences, University of Leicester, UK

Cite AsGet BibTex

Thomas Erlebach and Jakob T. Spooner. Parameterized Temporal Exploration Problems. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 15:1-15:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.SAND.2022.15

Abstract

In this paper we study the fixed-parameter tractability of the problem of deciding whether a given temporal graph 𝒢 admits a temporal walk that visits all vertices (temporal exploration) or, in some problem variants, a certain subset of the vertices. Formally, a temporal graph is a sequence 𝒢 = ⟨ G₁,..., G_L⟩ of graphs with V(G_t) = V(G) and E(G_t) ⊆ E(G) for all t ∈ [L] and some underlying graph G, and a temporal walk is a time-respecting sequence of edge-traversals. For the strict variant, in which edges must be traversed in strictly increasing timesteps, we give FPT algorithms for the problem of finding a temporal walk that visits a given set X of vertices, parameterized by |X|, and for the problem of finding a temporal walk that visits at least k distinct vertices in V, parameterized by k. For the non-strict variant, in which an arbitrary number of edges can be traversed in each timestep, we parameterize by the lifetime L of the input graph and provide an FPT algorithm for the temporal exploration problem. We also give additional FPT or W[2]-hardness results for further problem variants.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Fixed parameter tractability
Keywords
  • Temporal graphs
  • fixed-parameter tractability
  • parameterized complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eleni C. Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G. Spirakis. Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46-60, 2019. URL: https://doi.org/10.1016/j.jcss.2019.02.003.
  2. Eleni C. Akrida, George B. Mertzios, and Paul G. Spirakis. The temporal explorer who returns to the base. In Pinar Heggernes, editor, 11th International Conference on Algorithms and Complexity (CIAC 2019), volume 11485 of Lecture Notes in Computer Science, pages 13-24. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-17402-6_2.
  3. Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 107:108-123, 2020. URL: https://doi.org/10.1016/j.jcss.2019.08.002.
  4. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844-856, July 1995. URL: https://doi.org/10.1145/210332.210337.
  5. Richard Bellman. Dynamic programming treatment of the travelling salesman problem. Journal of the ACM, 9(1):61-63, January 1962. URL: https://doi.org/10.1145/321105.321111.
  6. Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal graphs of small pathwidth. Information Processing Letters, 142:68-71, 2019. URL: https://doi.org/10.1016/j.ipl.2018.10.016.
  7. Bonnet, Édouard, Paschos, Vangelis Th., and Sikora, Florian. Parameterized exact and approximation algorithms for maximum k-set cover and related satisfiability problems. RAIRO-Theoretical Informatics and Applications, 50(3):227-240, 2016. URL: https://doi.org/10.1051/ita/2016022.
  8. Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Online and offline algorithms for the time-dependent TSP with time zones. Algorithmica, 39(4):299-319, 2004. URL: https://doi.org/10.1007/s00453-004-1088-z.
  9. Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267-285, 2003. URL: https://doi.org/10.1142/S0129054103001728.
  10. Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In Paola Flocchini and Lucia Moura, editors, 32nd International Workshop on Combinatorial Algorithms (IWOCA 2021), volume 12757 of Lecture Notes in Computer Science, pages 107-121. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79987-8_8.
  11. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387-408, 2012. URL: https://doi.org/10.1080/17445760.2012.668546.
  12. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. Algorithmica, 83(9):2754-2802, 2021. URL: https://doi.org/10.1007/s00453-021-00831-w.
  13. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  14. Reinhard Diestel. Graph Theory. Springer-Verlag, 2000. Google Scholar
  15. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  16. Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. Journal of Computer and System Sciences, 119:1-18, 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.005.
  17. Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In Andrea Werneck Richa and Christian Scheideler, editors, 27th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2020), volume 12156 of Lecture Notes in Computer Science, pages 129-145. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-54921-3_8.
  18. Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196-210, 1962. URL: https://doi.org/10.1137/0110015.
  19. David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002. URL: https://doi.org/10.1006/jcss.2002.1829.
  20. George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche. Computing maximum matchings in temporal graphs. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of LIPIcs, pages 27:1-27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.27.
  21. Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12(4):239-280, 2016. URL: https://doi.org/10.1080/15427951.2016.1177801.
  22. Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs. Theoretical Computer Science, 634:1-23, 2016. URL: https://doi.org/10.1016/j.tcs.2016.04.006.
  23. Hendrik Molter. Classic graph problems made temporal - a parameterized complexity analysis. PhD thesis, Technical University of Berlin, Germany, 2020. URL: https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374.
  24. Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In IEEE 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), pages 182-191. IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SFCS.1995.492475.
  25. Herbert Robbins. A remark on Stirling’s formula. The American Mathematical Monthly, 62(1):26-29, 1955. Google Scholar
  26. Claude E. Shannon. Presentation of a maze-solving machine. In Neil James Alexander Sloane and Aaron D. Wyner, editors, Claude Elwood Shannon: Collected Papers, pages 681-687. IEEE Press, 1993. Google Scholar
  27. Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path problems in temporal graphs. Proceedings of the VLDB Endowment, 7(9):721-732, May 2014. URL: https://doi.org/10.14778/2732939.2732945.
  28. Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of finding small separators in temporal graphs. Journal of Computer and System Sciences, 107:72-92, 2020. URL: https://doi.org/10.1016/j.jcss.2019.07.006.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail