Computational Power of Opaque Robots

Authors Caterina Feletti , Lucia Mambretti , Carlo Mereghetti , Beatrice Palano



PDF
Thumbnail PDF

File

LIPIcs.SAND.2024.13.pdf
  • Filesize: 0.81 MB
  • 19 pages

Document Identifiers

Author Details

Caterina Feletti
  • Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
Lucia Mambretti
  • Milan, Italy
Carlo Mereghetti
  • Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
Beatrice Palano
  • Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

Acknowledgements

C. Feletti, C. Mereghetti, and B. Palano are members of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM). The authors thank the anonymous referees for their helpful comments which contributed to improving the paper.

Cite AsGet BibTex

Caterina Feletti, Lucia Mambretti, Carlo Mereghetti, and Beatrice Palano. Computational Power of Opaque Robots. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAND.2024.13

Abstract

In the field of distributed computing by robot swarms, the research comprehends manifold models where robots operate in the Euclidean plane through a sequence of look-compute-move cycles. Models under study differ for (i) the possibility of storing constant-size information, (ii) the possibility of communicating constant-size information, and (iii) the synchronization mode. By varying features (i,ii), we obtain the noted four base models: OBLOT (silent and oblivious robots), FSTA (silent and finite-state robots), FCOM (oblivious and finite-communication robots), and LUMI (finite-state and finite-communication robots). Combining each base model with the three main synchronization modes (fully synchronous, semi-synchronous, and asynchronous), we obtain the well-known 12 models. Extensive research has studied their computational power, proving the hierarchical relations between different models. However, only transparent robots have been considered. In this work, we study the taxonomy of the 12 models considering collision-intolerant opaque robots. We present six witness problems that prove the majority of the computational relations between the 12 models. In particular, the last witness problem depicts a peculiar issue occurring in the case of obstructed visibility and asynchrony.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Mobile robots
  • Look-Compute-Move
  • Computational complexity
  • Opaque robots
  • Distributed computing
  • Obstructed visibility
  • Collision intolerance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci., 849:138-158, 2021. URL: https://doi.org/10.1016/J.TCS.2020.10.015.
  2. Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi Wada. Autonomous mobile robots: Refining the computational landscape. In 35th International Parallel and Distributed Processing Symposium Workshops, IPDPS, pages 576-585. IEEE, 2021. URL: https://doi.org/10.1109/IPDPSW52791.2021.00091.
  3. Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi Wada. On the computational power of energy-constrained mobile robots: Algorithms and cross-model analysis. In 29th International Colloquium on Structural Information and Communication Complexity, SIROCCO, volume 13298 of Lecture Notes in Computer Science, pages 42-61. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-09993-9_3.
  4. Davide Canepa and Maria Gradinariu Potop-Butucaru. Stabilizing flocking via leader election in robot networks. In 9th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS, volume 4838 of Lecture Notes in Computer Science, pages 52-66. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-76627-8_7.
  5. Gianlorenzo D'Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo Navarra. Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci., 610:158-168, 2016. URL: https://doi.org/10.1016/J.TCS.2014.06.045.
  6. Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita. Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171-184, 2016. URL: https://doi.org/10.1016/J.TCS.2015.09.018.
  7. Shantanu Das, Riccardo Focardi, Flaminia L. Luccio, Euripides Markou, and Marco Squarcina. Gathering of robots in a ring with mobile faults. Theor. Comput. Sci., 764:42-60, 2019. URL: https://doi.org/10.1016/J.TCS.2018.05.002.
  8. Xavier Défago, Maria Potop-Butucaru, and Sébastien Tixeuil. Fault-tolerant mobile robots. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 234-251. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_10.
  9. Mattia D'Emidio, Daniele Frigioni, and Alfredo Navarra. Synchronous robots vs asynchronous lights-enhanced robots on graphs. In 16th Italian Conference on Theoretical Computer Science, ICTCS, pages 169-180. Elsevier, 2015. URL: https://doi.org/10.1016/J.ENTCS.2016.03.012.
  10. Mattia D'Emidio, Daniele Frigioni, and Alfredo Navarra. Characterizing the computational power of anonymous mobile robots. In 36th International Conference on Distributed Computing Systems, ICDCS, pages 293-302. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/ICDCS.2016.58.
  11. Mattia D'Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo Navarra. Characterizing the computational power of mobile robots on graphs and implications for the euclidean plane. Inf. Comput., 263:57-74, 2018. URL: https://doi.org/10.1016/J.IC.2018.09.010.
  12. Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Multiple agents rendezvous in a ring in spite of a black hole. In 7th International Conference on Principles of Distributed Systems, OPODIS, volume 3144 of Lecture Notes in Computer Science, pages 34-46. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-27860-3_6.
  13. Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for swarms of opaque robots with lights. In 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS, volume 11201 of Lecture Notes in Computer Science, pages 317-332. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-03232-6_21.
  14. Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. O(logn)-time uniform circle formation for asynchronous opaque luminous robots. In 27th International Conference on Principles of Distributed Systems, OPODIS, volume 286 of LIPIcs, pages 5:1-5:21, 2023. URL: https://doi.org/10.4230/LIPICS.OPODIS.2023.5.
  15. Paola Flocchini. Gathering. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 63-82. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_4.
  16. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012. URL: https://doi.org/10.2200/S00440ED1V01Y201208DCT010.
  17. Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7.
  18. Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413-457, 2017. URL: https://doi.org/10.1007/S00446-016-0291-X.
  19. Paola Flocchini, Nicola Santoro, Yuichi Sudo, and Koichi Wada. On asynchrony, memory, and communication: Separations and landscapes. In 27th International Conference on Principles of Distributed Systems, OPODIS, volume 286 of LIPIcs, pages 28:1-28:23, 2023. URL: https://doi.org/10.4230/LIPICS.OPODIS.2023.28.
  20. Paola Flocchini, Nicola Santoro, and Koichi Wada. On memory, communication, and synchronous schedulers when moving and computing. In 23rd International Conference on Principles of Distributed Systems, OPODIS, volume 153 of LIPIcs, pages 25:1-25:17, 2019. URL: https://doi.org/10.4230/LIPICS.OPODIS.2019.25.
  21. Taisuke Izumi, Daichi Kaino, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. On time complexity for connectivity-preserving scattering of mobile robots. Theor. Comput. Sci., 738:42-52, 2018. URL: https://doi.org/10.1016/J.TCS.2018.04.047.
  22. Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada. Gathering on rings for myopic asynchronous robots with lights. In 23rd International Conference on Principles of Distributed Systems, OPODIS, volume 153 of LIPIcs, pages 27:1-27:17, 2019. URL: https://doi.org/10.4230/LIPICS.OPODIS.2019.27.
  23. Peter Kling and Friedhelm Meyer auf der Heide. Continuous protocols for swarm robotics. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 317-334. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_13.
  24. Giuseppe Antonio Di Luna. Mobile agents on dynamic graphs. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 549-584. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_20.
  25. Moumita Mondal and Sruti Gan Chaudhuri. Uniform scattering of robots on alternate nodes of a grid. In 23rd International Conference on Distributed Computing and Networking, pages 254-259. ACM, 2022. URL: https://doi.org/10.1145/3491003.3493231.
  26. Giuseppe Prencipe. Pattern formation. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 37-62. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_3.
  27. Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete visibility for robots with lights: The asynchronous case. Algorithms, 14(2):56, 2021. URL: https://doi.org/10.3390/A14020056.
  28. Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh Rai. Complete visibility for robots with lights in O(1) time. In 18th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS, pages 327-345, 2016. URL: https://doi.org/10.1007/978-3-319-49259-9_26.
  29. Kazuo Sugihara and Ichiro Suzuki. Distributed algorithms for formation of geometric patterns with many mobile robots. J. Field Robotics, 13(3):127-139, 1996. Google Scholar
  30. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput., 28(4):1347-1363, 1999. URL: https://doi.org/10.1137/S009753979628292X.
  31. Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433-2453, 2010. URL: https://doi.org/10.1016/J.TCS.2010.01.037.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail