Brief Announcement: The Dynamic Steiner Tree Problem: Definitions, Complexity, Algorithms

Authors Stefan Balev, Yoann Pigné, Éric Sanlaville , Mathilde Vernet



PDF
Thumbnail PDF

File

LIPIcs.SAND.2024.24.pdf
  • Filesize: 0.61 MB
  • 6 pages

Document Identifiers

Author Details

Stefan Balev
  • Université Le Havre Normandie, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, LITIS UR 4108, F-76600 Le Havre, France
Yoann Pigné
  • Université Le Havre Normandie, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, LITIS UR 4108, F-76600 Le Havre, France
Éric Sanlaville
  • Université Le Havre Normandie, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, LITIS UR 4108, F-76600 Le Havre, France
Mathilde Vernet
  • LIA, Avignon Université, Avignon, France

Cite AsGet BibTex

Stefan Balev, Yoann Pigné, Éric Sanlaville, and Mathilde Vernet. Brief Announcement: The Dynamic Steiner Tree Problem: Definitions, Complexity, Algorithms. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 24:1-24:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAND.2024.24

Abstract

This note introduces an extension of the Steiner tree problem applied to dynamic graphs. It discusses its interest, studies its complexity and proposes an algorithm tested on generated and real data.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Paths and connectivity problems
Keywords
  • Steiner Tree
  • Dynamic Graph
  • Complexity
  • experimental study

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum temporally connected subgraphs. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), 2016. arXiv preprint arXiv:1602.06411. Google Scholar
  2. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387-408, 2012. Google Scholar
  3. Arnaud Casteigts, Joseph G Peters, and Jason Schoeters. Temporal cliques admit sparse spanners. Journal of Computer and System Sciences, 121:1-17, 2021. Google Scholar
  4. Andrea EF Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Flooding time in edge-markovian dynamic graphs. In Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing, pages 213-222, 2008. Google Scholar
  5. Amr Hilal, Jawwad N Chattha, Vivek Srivastava, Michael S Thompson, Allen B MacKenzie, Luiz A DaSilva, and Pallavi Saraswati. Crawdad vt/maniac, 2022. URL: https://doi.org/10.15783/C7WG6T.
  6. Mathilde Vernet, Yoann Pigne, and Eric Sanlaville. A study of connectivity on dynamic graphs: computing persistent connected components. 4OR, 21(2):205-233, 2023. Google Scholar
  7. Kevin White, Martin Farber, and William Pulleyblank. Steiner trees, connected domination and strongly chordal graphs. Networks, 15(1):109-124, 1985. Google Scholar
  8. B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(02):267-285, 2003. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail