Satsuma: Structure-Based Symmetry Breaking in SAT

Authors Markus Anders, Sofia Brenner , Gaurav Rattan



PDF
Thumbnail PDF

File

LIPIcs.SAT.2024.4.pdf
  • Filesize: 0.93 MB
  • 23 pages

Document Identifiers

Author Details

Markus Anders
  • TU Darmstadt, Germany
Sofia Brenner
  • TU Darmstadt, Germany
Gaurav Rattan
  • University of Twente, Enschede, The Netherlands

Cite AsGet BibTex

Markus Anders, Sofia Brenner, and Gaurav Rattan. Satsuma: Structure-Based Symmetry Breaking in SAT. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SAT.2024.4

Abstract

Symmetry reduction is crucial for solving many interesting SAT instances in practice. Numerous approaches have been proposed, which try to strike a balance between symmetry reduction and computational overhead. Arguably the most readily applicable method is the computation of static symmetry breaking constraints: a constraint restricting the search-space to non-symmetrical solutions is added to a given SAT instance. A distinct advantage of static symmetry breaking is that the SAT solver itself is not modified. A disadvantage is that the strength of symmetry reduction is usually limited. In order to boost symmetry reduction, the state-of-the-art tool BreakID [Devriendt et. al] pioneered the identification and tailored breaking of a particular substructure of symmetries, the so-called row interchangeability groups. In this paper, we propose a new symmetry breaking tool called satsuma. The core principle of our tool is to exploit more diverse but frequently occurring symmetry structures. This is enabled by new practical detection algorithms for row interchangeability, row-column symmetry, Johnson symmetry, and various combinations. Based on the resulting structural description, we then produce symmetry breaking constraints. We compare this new approach to BreakID on a range of instance families exhibiting symmetry. Our benchmarks suggest improved symmetry reduction in the presence of Johnson symmetry and comparable performance in the presence of row-column symmetry. Moreover, our implementation runs significantly faster, even though it identifies more diverse structures.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • symmetry breaking
  • boolean satisfiability
  • graph isomorphism

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-breaking for boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC 2003, Anaheim, CA, USA, June 2-6, 2003, pages 836-839. ACM, 2003. URL: https://doi.org/10.1145/775832.776042.
  2. Markus Anders, Sofia Brenner, and Gaurav Rattan. satsuma. Software, version 1.0., swhId: https://archive.softwareheritage.org/swh:1:dir:134ea7952a25d92ba2addf7ff25aa18183550735;origin=https://github.com/markusa4/satsuma;visit=swh:1:snp:c688cc76e5c9281c04c683108ccc908ae32f6707;anchor=swh:1:rev:7c25c52df6c1ca2090c971d9b144b64ecd08e075 (visited on 2024-08-05). URL: https://github.com/markusa4/satsuma.
  3. Markus Anders and Pascal Schweitzer. dejavu. https://automorphisms.org.
  4. Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 6:1-6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.6.
  5. Markus Anders, Pascal Schweitzer, and Mate Soos. Algorithms transcending the SAT-symmetry interface. In 26th International Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 1:1-1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SAT.2023.1.
  6. Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for symmetry detection. In 21st International Symposium on Experimental Algorithms, SEA 2023, July 24-26, 2023, Barcelona, Spain, volume 265 of LIPIcs, pages 1:1-1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SEA.2023.1.
  7. Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism, color refinement, and compactness. Comput. Complex., 26(3):627-685, 2017. URL: https://doi.org/10.1007/s00037-016-0147-6.
  8. Gilles Audemard, Saïd Jabbour, and Lakhdar Sais. Symmetry breaking in quantified boolean formulae. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 2262-2267, 2007. URL: http://ijcai.org/Proceedings/07/Papers/364.pdf.
  9. László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684-697. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897542.
  10. László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 409-420. ACM, 1987. URL: https://doi.org/10.1145/28395.28439.
  11. Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for the complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581-614, 2017. URL: https://doi.org/10.1007/s00224-016-9686-0.
  12. Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT Competition 2020 - Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Report Series B, pages 51-53. University of Helsinki, 2020. Google Scholar
  13. Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539-1589, 2023. URL: https://doi.org/10.1613/jair.1.14296.
  14. Bart Bogaerts, Jakob Nordström, Andy Oertel, and Çağrı Uluç Yıldırımoğlu. BreakID-kissat in SAT competition 2023 (system description). In Proceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions, Department of Computer Science Series of Publications B, Finland, 2023. Department of Computer Science, University of Helsinki. Google Scholar
  15. Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries in graphs: The nauty way. In Principles and Practice of Constraint Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 157-172. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-44953-1_11.
  16. Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for symmetry breaking in graph representation. Constraints An Int. J., 24(1):1-24, 2019. URL: https://doi.org/10.1007/s10601-018-9294-5.
  17. James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-breaking predicates for search problems. In Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR'96), Cambridge, Massachusetts, USA, November 5-8, 1996, pages 148-159. Morgan Kaufmann, 1996. Google Scholar
  18. Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure in symmetry detection for CNF. In Proceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages 530-534. ACM, 2004. URL: https://doi.org/10.1145/996566.996712.
  19. Jo Devriendt and Bart Bogaerts. BreakID: Static symmetry breaking for ASP (system description). CoRR, abs/1608.08447, 2016. URL: https://doi.org/10.48550/arXiv.1608.08447.
  20. Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning: Effective dynamic symmetry handling for SAT. In Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 83-100. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66263-3_6.
  21. Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static symmetry breaking for SAT. In Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 104-122. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-40970-2_8.
  22. Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9, 2012, pages 49-56. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/ICTAI.2012.16.
  23. Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models. In Principles and Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer Science, pages 462-476. Springer, 2002. URL: https://doi.org/10.1007/3-540-46135-3_31.
  24. Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kızıltan, Ian Miguel, and Toby Walsh. Matrix modelling. Technical Report APES-36-2001, APES group (2001), 2001. Google Scholar
  25. Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming. In Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages 329-376. Elsevier, 2006. URL: https://doi.org/10.1016/S1574-6526(06)80014-3.
  26. Tommi A. Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive prefix-assignment technique for symmetry reduction. J. Symb. Comput., 99:21-49, 2020. URL: https://doi.org/10.1016/j.jsc.2019.03.002.
  27. Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for canonical labeling. In Theory and Practice of Algorithms in (Computer) Systems - First International ICST Conference, TAPAS 2011, Rome, Italy, April 18-20, 2011. Proceedings, volume 6595 of Lecture Notes in Computer Science, pages 151-162. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-19754-3_16.
  28. George Katsirelos, Nina Narodytska, and Toby Walsh. On the complexity and completeness of static constraints for breaking row and column symmetry. In Principles and Practice of Constraint Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, volume 6308 of Lecture Notes in Computer Science, pages 305-320. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15396-9_26.
  29. Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT attack on rota’s basis conjecture. In 25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 4:1-4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SAT.2022.4.
  30. Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In 27th International Conference on Principles and Practice of Constraint Programming, CP, volume 210 of LIPIcs, pages 34:1-34:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CP.2021.34.
  31. Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. Cnfgen: A generator of crafted benchmarks. In Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 464-473. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66263-3_30.
  32. Eugene M. Luks and Amitabha Roy. The complexity of symmetry-breaking formulas. Ann. Math. Artif. Intell., 41(1):19-45, 2004. URL: https://doi.org/10.1023/B:AMAI.0000018578.92398.10.
  33. Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94-112, 2014. URL: https://doi.org/10.1016/j.jsc.2013.09.003.
  34. Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym: Introducing effective symmetry breaking in SAT solving. In Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I, volume 10805 of Lecture Notes in Computer Science, pages 99-114. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-89960-2_6.
  35. Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling methods for mixed integer programs. Math. Program. Comput., 11(1):37-93, 2019. URL: https://doi.org/10.1007/s12532-018-0140-y.
  36. Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiability solver. Constraints An Int. J., 14(4):478-505, 2009. URL: https://doi.org/10.1007/s10601-008-9060-1.
  37. Karem A. Sakallah. Symmetry and satisfiability. In Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 509-570. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA200996.
  38. Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge University Press, 2003. URL: https://doi.org/10.1017/CBO9780511546549.
  39. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic problems. In Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 244-257. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02777-2_24.
  40. Gottfried Tinhofer. A note on compact graphs. Discret. Appl. Math., 30(2-3):253-264, 1991. URL: https://doi.org/10.1016/0166-218X(91)90049-3.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail