Fast Spherical Drawing of Triangulations: An Experimental Study of Graph Drawing Tools

Authors Luca Castelli Aleardi, Gaspard Denis, Éric Fusy



PDF
Thumbnail PDF

File

LIPIcs.SEA.2018.24.pdf
  • Filesize: 18.22 MB
  • 14 pages

Document Identifiers

Author Details

Luca Castelli Aleardi
  • LIX - École Polytechnique, Palaiseau, France
Gaspard Denis
  • LIX - École Polytechnique, Palaiseau, France
Éric Fusy
  • LIX - École Polytechnique, Palaiseau, France

Cite AsGet BibTex

Luca Castelli Aleardi, Gaspard Denis, and Éric Fusy. Fast Spherical Drawing of Triangulations: An Experimental Study of Graph Drawing Tools. In 17th International Symposium on Experimental Algorithms (SEA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 103, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.SEA.2018.24

Abstract

We consider the problem of computing a spherical crossing-free geodesic drawing of a planar graph: this problem, as well as the closely related spherical parameterization problem, has attracted a lot of attention in the last two decades both in theory and in practice, motivated by a number of applications ranging from texture mapping to mesh remeshing and morphing. Our main concern is to design and implement a linear time algorithm for the computation of spherical drawings provided with theoretical guarantees. While not being aesthetically pleasing, our method is extremely fast and can be used as initial placer for spherical iterative methods and spring embedders. We provide experimental comparison with initial placers based on planar Tutte parameterization. Finally we explore the use of spherical drawings as initial layouts for (Euclidean) spring embedders: experimental evidence shows that this greatly helps to untangle the layout and to reach better local minima.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • Graph drawing
  • planar triangulations
  • spherical parameterizations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. Spherical orbifold tutte embeddings. ACM Trans. Graph., 36(4):90:1-90:13, 2017. Google Scholar
  2. Noam Aigerman and Yaron Lipman. Orbifold tutte embeddings. ACM Trans. Graph., 34(6):190:1-190:12, 2015. Google Scholar
  3. Marc Alexa. Merging polyhedral shapes with scattered features. The Visual Computer, 16(1):26-37, 2000. Google Scholar
  4. Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source software for exploring and manipulating networks. In Proc. of the Third Int. Conf. on Weblogs and Social Media, ICWSM 2009, 2009, 2009. Google Scholar
  5. Luca Castelli Aleardi, Gaspard Denis, and Eric Fusy. Fast spherical drawing of triangulations: an experimental study of graph drawing tools, 2018. URL: https://hal.archives-ouvertes.fr/hal-01761754.
  6. Luca Castelli-Aleardi, Olivier Devillers, and Éric Fusy. Canonical ordering for triangulations on the cylinder, with applications to periodic straight-line drawings. In Graph Drawing - 20th International Symposium, pages 376-387, 2012. Google Scholar
  7. Luca Castelli-Aleardi, Éric Fusy, and Anatolii Kostrygin. Periodic planar straight-frame drawings with polynomial resolution. In LATIN 2014: Theoretical Informatics - 11th Latin American Symposium, pages 168-179, 2014. Google Scholar
  8. Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl., 16(2):243-259, 2012. Google Scholar
  9. Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Softw., 38(1):1:1-1:25, 2011. Google Scholar
  10. Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990. Google Scholar
  11. Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Planar drawings of higher-genus graphs. J. Graph Algorithms Appl., 15(1):7-32, 2011. Google Scholar
  12. John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon Woodhull. Graphviz - open source graph drawing tools. In Proc. of Graph Drawing, pages 483-484, 2001. Google Scholar
  13. J. Joseph Fowler and Stephen G. Kobourov. Planar preprocessing for spring embedders. In Graph Drawing - 20th International Symposium, pages 388-399, 2012. Google Scholar
  14. Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and Christian Sommer. Short and simple cycle separators in planar graphs. ACM Journal of Experimental Algorithmics, 21(1):2.2:1-2.2:24, 2016. Google Scholar
  15. Ilja Friedel, Peter Schröder, and Mathieu Desbrun. Unconstrained spherical parameterization. J. Graphics Tools, 12(1):17-26, 2007. Google Scholar
  16. Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. Softw., Pract. Exper., 21(11):1129-1164, 1991. Google Scholar
  17. Daniel Gonçalves and Benjamin Lévêque. Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. Discrete & Computational Geometry, 51(1):67-131, 2014. URL: http://dx.doi.org/10.1007/s00454-013-9552-7.
  18. Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameterization for 3d meshes. ACM Trans. Graph., 22(3):358-363, 2003. Google Scholar
  19. Stefan Hachul and Michael Jünger. Large-graph layout algorithms at work: An experimental study. J. Graph Algorithms Appl., 11(2):345-369, 2007. Google Scholar
  20. Yifan Hu. Efficient, high-quality force-directed graph drawing. The Mathematica Journal, 10(1), 2006. URL: http://yifanhu.net/PUB/graph_draw_small.pdf.
  21. Stephen G. Kobourov. Force-directed drawing algorithms. In Handbook on Graph Drawing and Visualization, pages 383-408. Chapman and Hall/CRC, 2013. Google Scholar
  22. Stephen G. Kobourov and Kevin Wampler. Non-euclidean spring embedders. IEEE Trans. Vis. Comput. Graph., 11(6):757-767, 2005. Google Scholar
  23. Chris Muelder and Kwan-Liu Ma. A treemap based method for rapid layout of large graphs. In IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, pages 231-238, 2008. Google Scholar
  24. Hiroshi Nagamochi, Takahisa Suzuki, and Toshimasa Ishii. A simple recognition of maximal planar graphs. Inf. Process. Lett., 89(5):223-226, 2004. Google Scholar
  25. Dominique Poulalhon and Gilles Schaeffer. Optimal coding and sampling of triangulations. Algorithmica, 46(3-4):505-527, 2006. URL: http://dx.doi.org/10.1007/s00453-006-0114-8.
  26. S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer. Practical spherical embedding of manifold triangle meshes. In (SMI2005), pages 258-267, 2005. Google Scholar
  27. Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, volume 90, pages 138-148, 1990. URL: http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf.
  28. Avner Shapiro and Ayellet Tal. Polyhedron realization for shape transformation. The Visual Computer, 14(8/9):429-444, 1998. Google Scholar
  29. Alla Sheffer, Craig Gotsman, and Nira Dyn. Robust spherical parameterization of triangular meshes. Computing, 72(1-2):185-193, 2004. Google Scholar
  30. Paolo Simonetto, Daniel W. Archambault, David Auber, and Romain Bourqui. Impred: An improved force-directed algorithm that prevents nodes from crossing edges. Comput. Graph. Forum, 30(3):1071-1080, 2011. Google Scholar
  31. Chris Walshaw. A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms Appl., 7(3):253-285, 2003. Google Scholar
  32. Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel. Curvilinear spherical parameterization. In Int. Conf. on Shape Modeling and Applications (SMI 2006), page 11, 2006. Google Scholar