Document

# A Characterization of Wreath Products Where Knapsack Is Decidable

## File

LIPIcs.STACS.2021.11.pdf
• Filesize: 0.77 MB
• 17 pages

## Cite As

Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A Characterization of Wreath Products Where Knapsack Is Decidable. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.STACS.2021.11

## Abstract

The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined for each finitely generated group G and takes as input group elements g_1,…,g_n,g ∈ G and asks whether there are x_1,…,x_n ≥ 0 with g_1^{x_1}⋯ g_n^{x_n} = g. We study the knapsack problem for wreath products G≀H of groups G and H. Our main result is a characterization of those wreath products G≀H for which the knapsack problem is decidable. The characterization is in terms of decidability properties of the indiviual factors G and H. To this end, we introduce two decision problems, the intersection knapsack problem and its restriction, the positive intersection knapsack problem. Moreover, we apply our main result to H₃(ℤ), the discrete Heisenberg group, and to Baumslag-Solitar groups BS(1,q) for q ≥ 1. First, we show that the knapsack problem is undecidable for G≀H₃(ℤ) for any G ≠ 1. This implies that for G ≠ 1 and for infinite and virtually nilpotent groups H, the knapsack problem for G≀H is decidable if and only if H is virtually abelian and solvability of systems of exponent equations is decidable for G. Second, we show that the knapsack problem is decidable for G≀BS(1,q) if and only if solvability of systems of exponent equations is decidable for G.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Problems, reductions and completeness
• Theory of computation → Theory and algorithms for application domains
##### Keywords
• knapsack
• wreath products
• decision problems in group theory
• decidability
• discrete Heisenberg group
• Baumslag-Solitar groups

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over commuting matrices. In Proceedings of SODA 1996, pages 498-507. ACM/SIAM, 1996.
2. G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bulletin of the American Mathematical Society, 68(3):199-201, 1962. URL: https://doi.org/10.1090/S0002-9904-1962-10745-9.
3. P. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix equations and hilbert’s tenth problem. International Journal of Algebra and Computation, 18(8):1231-1241, 2008. URL: https://doi.org/10.1142/S0218196708004925.
4. P. Bell, I. Potapov, and P. Semukhin. On the mortality problem: From multiplicative matrix equations to linear recurrence sequences and beyond. In Proceedings of MFCS 2019, pages 83:1-83:15, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.83.
5. P. Bergsträßer, M. Ganardi, and G. Zetzsche. A characterization of wreath products where knapsack is decidable, 2021. URL: http://arxiv.org/abs/2101.06132.
6. F. A. Dudkin and A. V. Treyer. Knapsack problem for baumslag-solitar groups. Siberian Journal of Pure and Applied Mathematics, 18(4):43-55, 2018.
7. M. Figelius, M. Ganardi, M. Lohrey, and G. Zetzsche. The complexity of knapsack problems in wreath products. In Proceedings of ICALP 2020, pages 126:1-126:18, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.126.
8. M. Figelius, M. Lohrey, and G. Zetzsche. Closure properties of knapsack semilinear groups, 2019. URL: http://arxiv.org/abs/1911.12857.
9. E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal of Symbolic Computation, 74:96-108, 2016. URL: https://doi.org/10.1016/j.jsc.2015.05.006.
10. M. Ganardi, D. König, M. Lohrey, and G. Zetzsche. Knapsack problems for wreath products. In Proceedings of STACS 2018, volume 96 of LIPIcs, pages 32:1-32:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.32.
11. M. Ganardi and M. Lohrey, 2020. Personal communication.
12. M. Gromov. Groups of polynomial growth and expanding maps. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 53(1):53-78, 1981.
13. F. Gul, M. Sohrabi, and A. Ushakov. Magnus embedding and algorithmic properties of groups f/n^(d). Transactions of the American Mathematical Society, 369(9):6189-6206, 2017.
14. M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups. Springer-Verlag, New York, 1979. Translated from the second Russian edition.
15. B. Khoussainov and A. Nerode. Automatic presentations of structures. In International Workshop on Logic and Computational Complexity, pages 367-392. Springer, 1994.
16. D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics, pages 138-153. American Mathematical Society, 2016. URL: https://doi.org/10.1090/conm/677.
17. M. Lohrey. Knapsack in hyperbolic groups. Journal of Algebra, 545:390-415, 2020. URL: https://doi.org/10.1016/j.jalgebra.2019.04.008.
18. M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath products. Information and Computation, 243:191-204, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.014.
19. M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated products. In Proceedings of STACS 2016, volume 47 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1-50:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2016.50.
20. M. Lohrey and G. Zetzsche. Knapsack in graph groups. Theory of Computing Systems, 62(1):192-246, 2018. URL: https://doi.org/10.1007/s00224-017-9808-3.
21. M. Lohrey and G. Zetzsche. Knapsack and the power word problem in solvable baumslag-solitar groups. In Proceedings of MFCS 2020, pages 67:1-67:15, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.67.
22. W. Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series, 40:764-768, 1939.
23. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.
24. J. Matthews. The conjugacy problem in wreath products and free metabelian groups. Transactions of the American Mathematical Society, 121(2):329-339, 1966.
25. A. Miasnikov, S. Vassileva, and A. Weiß. The conjugacy problem in free solvable groups and wreath products of abelian groups is in TC⁰. Theory of Computing Systems, 63(4):809-832, 2019.
26. A. Mishchenko and A. Treier. Knapsack problem for nilpotent groups. Groups Complexity Cryptology, 9(1):87-98, 2017.
27. A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics of Computation, 84:987-1016, 2015. URL: https://doi.org/10.1090/S0025-5718-2014-02880-9.
28. V. Remeslennikov and V. Sokolov. Some properties of a magnus embedding. Algebra and Logic, 9(5):342-349, 1970.
X

Feedback for Dagstuhl Publishing

### Thanks for your feedback!

Feedback submitted

### Could not send message

Please try again later or send an E-mail