Document

# Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

## File

LIPIcs.STACS.2021.27.pdf
• Filesize: 0.83 MB
• 18 pages

## Acknowledgements

We would like to thank Markus Jablonka for helpful discussions.

## Cite As

Thomas Erlebach, Michael Hoffmann, and Murilo Santos de Lima. Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.STACS.2021.27

## Abstract

The area of computing with uncertainty considers problems where some information about the input elements is uncertain, but can be obtained using queries. For example, instead of the weight of an element, we may be given an interval that is guaranteed to contain the weight, and a query can be performed to reveal the weight. While previous work has considered models where queries are asked either sequentially (adaptive model) or all at once (non-adaptive model), and the goal is to minimize the number of queries that are needed to solve the given problem, we propose and study a new model where k queries can be made in parallel in each round, and the goal is to minimize the number of query rounds. We use competitive analysis and present upper and lower bounds on the number of query rounds required by any algorithm in comparison with the optimal number of query rounds. Given a set of uncertain elements and a family of m subsets of that set, we present an algorithm for determining the value of the minimum of each of the subsets that requires at most (2+ε) ⋅ opt_k+O(1/(ε) ⋅ lg m) rounds for every 0 < ε < 1, where opt_k is the optimal number of rounds, as well as nearly matching lower bounds. For the problem of determining the i-th smallest value and identifying all elements with that value in a set of uncertain elements, we give a 2-round-competitive algorithm. We also show that the problem of sorting a family of sets of uncertain elements admits a 2-round-competitive algorithm and this is the best possible.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Design and analysis of algorithms
• Mathematics of computing → Discrete mathematics
• Theory of computation → Theory and algorithms for application domains
##### Keywords
• online algorithms
• competitive analysis
• explorable uncertainty
• parallel algorithms
• minimum problem
• selection problem

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with imprecise comparisons. ACM Transactions on Algorithms, 12(2):19:1-19:19, 2016. URL: https://doi.org/10.1145/2701427.
2. S. Albers and A. Eckl. Explorable uncertainty in scheduling with non-uniform testing times. In WAOA 2020: 18th International Workshop on Approximation and Online Algorithms, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2021. To appear. Also: arXiv preprint, https://arxiv.org/abs/2009.13316, 2020.
3. L. Arantes, E. Bampis, A. V. Kononov, M. Letsios, G. Lucarelli, and P. Sens. Scheduling under uncertainty: A query-based approach. In IJCAI 2018: 27th International Joint Conference on Artificial Intelligence, pages 4646-4652, 2018. URL: https://doi.org/10.24963/ijcai.2018/646.
4. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ák, and L. S. Ram. Network discovery and verification. IEEE Journal on Selected Areas in Communications, 24(12):2168-2181, 2006. URL: https://doi.org/10.1109/JSAC.2006.884015.
5. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998.
6. M. Braverman and E. Mossel. Sorting from noisy information. arXiv preprint, 2009. URL: http://arxiv.org/abs/0910.1191.
7. R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric computing with uncertainty. Theory of Computing Systems, 38(4):411-423, 2005. URL: https://doi.org/10.1007/s00224-004-1180-4.
8. C. L. Canonne and T. Gur. An adaptivity hierarchy theorem for property testing. computational complexity, 27:671-716, 2018. URL: https://doi.org/10.1007/s00037-018-0168-4.
9. G. Charalambous and M. Hoffmann. Verification problem of maximal points under uncertainty. In T. Lecroq and L. Mouchard, editors, IWOCA 2013: 24th International Workshop on Combinatorial Algorithms, volume 8288 of Lecture Notes in Computer Science, pages 94-105. Springer Berlin Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-45278-9_9.
10. C. Dürr, T. Erlebach, N. Megow, and J. Meißner. An adversarial model for scheduling with testing. Algorithmica, 2020. URL: https://doi.org/10.1007/s00453-020-00742-2.
11. T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty. In D. Kratsch and I. Todinca, editors, WG 2014: International Workshop on Graph-Theoretic Concepts in Computer Science, volume 8747 of Lecture Notes in Computer Science, pages 164-175. Springer Berlin Heidelberg, 2014. URL: https://doi.org/10.1007/978-3-319-12340-0_14.
12. T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty. Bulletin of the EATCS, 116:22-39, 2015. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/335.
13. T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set problems under uncertainty. Theoretical Computer Science, 613:51-64, 2016. URL: https://doi.org/10.1016/j.tcs.2015.11.025.
14. T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal'ák, and R. Raman. Computing minimum spanning trees with uncertainty. In S. Albers and P. Weil, editors, STACS'08: 25th International Symposium on Theoretical Aspects of Computer Science, volume 1 of Leibniz International Proceedings in Informatics, pages 277-288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2008. URL: https://doi.org/10.4230/LIPIcs.STACS.2008.1358.
15. T. Feder, R. Motwani, L. O'Callaghan, C. Olston, and R. Panigrahy. Computing shortest paths with uncertainty. Journal of Algorithms, 62(1):1-18, 2007. URL: https://doi.org/10.1016/j.jalgor.2004.07.005.
16. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median with uncertainty. SIAM Journal on Computing, 32(2):538-547, 2003. URL: https://doi.org/10.1137/S0097539701395668.
17. J. Focke, N. Megow, and J. Meißner. Minimum spanning tree under explorable uncertainty in theory and experiments. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman, editors, SEA 2017: 16th International Symposium on Experimental Algorithms, volume 75 of Leibniz International Proceedings in Informatics, pages 22:1-22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.SEA.2017.22.
18. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180-187, 1972. URL: https://doi.org/10.1137/0201013.
19. M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack problem with queries. Computers & Operations Research, 55:12-22, 2015. URL: https://doi.org/10.1016/j.cor.2014.09.010.
20. M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and related problems. Theory of Computing Systems, 59(1):112-132, 2016. URL: https://doi.org/10.1007/s00224-015-9664-y.
21. M. M. Halldórsson and M. S. de Lima. Query-competitive sorting with uncertainty. In P. Rossmanith, P. Heggernes, and J.-P. Katoen, editors, MFCS 2019: 44th International Symposium on Mathematical Foundations of Computer Science, volume 138 of Leibniz International Proceedings in Informatics, pages 7:1-7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.7.
22. S. Kahan. A model for data in motion. In STOC'91: 23rd Annual ACM Symposium on Theory of Computing, pages 265-277, 1991. URL: https://doi.org/10.1145/103418.103449.
23. S. Khanna and W.-C. Tan. On computing functions with uncertainty. In PODS'01: 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 171-182, 2001. URL: https://doi.org/10.1145/375551.375577.
24. C. Lekkerkerker and J. Boland. Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae, 51(1):45-64, 1962. URL: https://eudml.org/doc/213681.
25. T. Maehara and Y. Yamaguchi. Stochastic packing integer programs with few queries. Mathematical Programming, 182:141-174, 2020. URL: https://doi.org/10.1007/s10107-019-01388-x.
26. N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning tree under uncertainty. SIAM Journal on Computing, 46(4):1217-1240, 2017. URL: https://doi.org/10.1137/16M1088375.
27. J. Meißner. Uncertainty Exploration: Algorithms, Competitive Analysis, and Computational Experiments. PhD thesis, Technische Universität Berlin, 2018. URL: https://doi.org/10.14279/depositonce-7327.
28. A. I. Merino and J. A. Soto. The minimum cost query problem on matroids with uncertainty areas. In C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, editors, ICALP 2019: 46th International Colloquium on Automata, Languages, and Programming, volume 132 of Leibniz International Proceedings in Informatics, pages 83:1-83:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.83.
29. C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries over replicated data. In VLDB 2000: 26th International Conference on Very Large Data Bases, pages 144-155, 2000. URL: http://ilpubs.stanford.edu:8090/437/.
30. I. O. Ryzhov and W. B. Powell. Information collection for linear programs with uncertain objective coefficients. SIAM Journal on Optimization, 22(4):1344-1368, 2012. URL: https://doi.org/10.1137/12086279X.
31. I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann. Preprocessing ambiguous imprecise points. In G. Barequet and Y. Wang, editors, SoCG 2019: 35th International Symposium on Computational Geometry, volume 129 of Leibniz International Proceedings in Informatics, pages 42:1-42:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.SoCG.2019.42.
32. W. A. Welz. Robot Tour Planning with High Determination Costs. PhD thesis, Technische Universität Berlin, 2014. URL: https://www.depositonce.tu-berlin.de/handle/11303/4597.
X

Feedback for Dagstuhl Publishing