Rice-Like Theorems for Automata Networks

Authors Guilhem Gamard, Pierre Guillon, Kevin Perrot, Guillaume Theyssier



PDF
Thumbnail PDF

File

LIPIcs.STACS.2021.32.pdf
  • Filesize: 0.71 MB
  • 17 pages

Document Identifiers

Author Details

Guilhem Gamard
  • Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
Pierre Guillon
  • Aix-Marseille Université, CNRS, I2M, Marseille, France
Kevin Perrot
  • Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
  • Université Côte d'Azur, CNRS, I3S, Sophia Antipolis, France
Guillaume Theyssier
  • Aix-Marseille Université, CNRS, I2M, Marseille, France

Acknowledgements

We would like to thank the colleagues that were involved in some discussions on the topic at the early stages of this work and somehow convinced us to pursue and finally settle the main result.

Cite AsGet BibTex

Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier. Rice-Like Theorems for Automata Networks. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.STACS.2021.32

Abstract

We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem, but in the computable world. Our main result is that testing any fixed first-order property on the dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove that testing a first-order property given as input on an automata network (also part of the input) is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it is PSPACE-hard to separate deterministic networks with a very high and a very low number of limit configurations; however, the problem of deciding whether the number of limit configurations is maximal up to a polynomial quantity belongs to the polynomial-time hierarchy.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
  • Theory of computation → Complexity classes
Keywords
  • Automata networks
  • Rice theorem
  • complexity classes
  • polynomial hierarchy
  • hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Aracena. Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70:1398-1409, 2008. Google Scholar
  2. B. Borchert and F. Stephan. Looking for an analogue of Rice’s theorem in circuit complexity theory. Mathematical Logic Quarterly, 46(4):489-504, 2000. URL: https://doi.org/10.1002/1521-3870(200010)46:4<489::AID-MALQ489>3.0.CO;2-F.
  3. P. Cull. Linear analysis of switching nets. Biol. Cybernet., 8:31-39, 1971. Google Scholar
  4. J. Demongeot, M. Noual, and S. Sené. Combinatorics of Boolean automata circuits dynamics. Discr. Appl. Math., 160:398-415, 2012. Google Scholar
  5. H.-D. Ebbinghaus and J. Flüm. Finite Model Theory. Springer-Verlag, 2nd edition, 1995. URL: https://doi.org/10.1007/3-540-28788-4.
  6. B. Elspas. The theory of autonomous linear sequential networks. IRE Trans. Circ. Theory, 6:45-60, 1959. Google Scholar
  7. C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant Cell, 16:2923-2939, 2004. Google Scholar
  8. E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior and Applications. Kluwer Academic Publishers, 1990. Google Scholar
  9. S. W. Golomb. Shift Register Sequences. Holden-Day Inc., 1967. Google Scholar
  10. W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132-145. North-Holland, 1963. URL: https://doi.org/10.1016/B978-0-7204-2233-7.50020-4.
  11. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999. URL: https://doi.org/10.1007/978-1-4612-0539-5.
  12. J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Computer Science, 127:229-254, 1994. Google Scholar
  13. G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature Rev. Mol. Cell Biol., 9:770-780, 2008. Google Scholar
  14. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22:437-467, 1969. URL: https://doi.org/10.1016/0022-5193(69)90015-0.
  15. S. C. Kleene. Automata Studies, chapter Representation of events in nerve nets and finite automata, pages 3-41. Princeton University Press, 1956. Google Scholar
  16. W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5:115-133, 1943. Google Scholar
  17. L. Mendoza and E. R. Alvarez-Buylla. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J. Theoret. Biol., 193:307-319, 1998. Google Scholar
  18. H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74:358-366, 1953. URL: https://doi.org/10.1090/S0002-9947-1953-0053041-6.
  19. A. Richard. Local negative circuits and fixed points in non-expansive Boolean networks. Discr. Appl. Math., 159:1085-1093, 2011. Google Scholar
  20. F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986. Google Scholar
  21. J. H. Silverman. A friendly introduction to number theory. Pearson Education, 4th edition, 2012. Google Scholar
  22. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC '73, pages 1-9, New York, NY, USA, 1973. ACM. URL: https://doi.org/10.1145/800125.804029.
  23. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277-297, 1995. Google Scholar
  24. R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42:563-585, 1973. URL: https://doi.org/10.1016/0022-5193(73)90247-6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail