Parameterized Lower Bounds for Problems in P via Fine-Grained Cross-Compositions

Authors Klaus Heeger , André Nichterlein , Rolf Niedermeier



PDF
Thumbnail PDF

File

LIPIcs.STACS.2023.35.pdf
  • Filesize: 0.87 MB
  • 19 pages

Document Identifiers

Author Details

Klaus Heeger
  • Algorithmics and Computational Complexity, Technische Universität Berlin, Germany
André Nichterlein
  • Algorithmics and Computational Complexity, Technische Universität Berlin, Germany
Rolf Niedermeier
  • Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Acknowledgements

In memory of Rolf Niedermeier, our colleague, friend, and mentor, who sadly passed away before this paper was finished. We thank the anonymous reviewers for their thoughtful and constructive feedback.

Cite AsGet BibTex

Klaus Heeger, André Nichterlein, and Rolf Niedermeier. Parameterized Lower Bounds for Problems in P via Fine-Grained Cross-Compositions. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.STACS.2023.35

Abstract

We provide a general framework to exclude parameterized running times of the form O(l^β + n^γ) for problems that have polynomial running time lower bounds under hypotheses from fine-grained complexity. Our framework is based on cross-compositions from parameterized complexity. We (conditionally) exclude running times of the form O(l^{γ/(γ-1) - ε} + n^γ) for any 1 < γ < 2 and ε > 0 for the following problems: - Longest Common (Increasing) Subsequence: Given two length-n strings over an alphabet Σ (over ℕ) and l ∈ ℕ, is there a common (increasing) subsequence of length l in both strings? - Discrete Fréchet Distance: Given two lists of n points each and k ∈ N, is the Fréchet distance of the lists at most k? Here l is the maximum number of points which one list is ahead of the other list in an optimum traversal. - Planar Motion Planning: Given a set of n non-intersecting axis-parallel line segment obstacles in the plane and a line segment robot (called rod), can the rod be moved to a specified target without touching any obstacles? Here l is the maximum number of segments any segment has in its vicinity. Moreover, we exclude running times O(l^{2γ/(γ-1) - ε} + n^γ) for any 1 < γ < 3 and ε > 0 for: - Negative Triangle: Given an edge-weighted graph with n vertices, is there a triangle whose sum of edge-weights is negative? Here l is the order of a maximum connected component. - Triangle Collection: Given a vertex-colored graph with n vertices, is there for each triple of colors a triangle whose vertices have these three colors? Here l is the order of a maximum connected component. - 2nd Shortest Path: Given an n-vertex edge-weighted digraph, vertices s and t, and k ∈ ℕ, has the second longest s-t-path length at most k? Here l is the directed feedback vertex set number. Except for 2nd Shortest Path all these running time bounds are tight, that is, algorithms with running time O(l^{γ/(γ-1)} + n^γ) for any 1 < γ < 2 and O(l^{2γ/(γ -1)} + n^γ) for any 1 < γ < 3, respectively, are known. Our running time lower bounds also imply lower bounds on kernelization algorithms for these problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • FPT in P
  • Kernelization
  • Decomposition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and other sequence similarity measures. In Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS 2015), pages 59-78. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.14.
  2. Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for subset sum and bicriteria path. ACM Transactions on Algorithms, 18(1):6:1-6:22, 2022. URL: https://doi.org/10.1145/3450524.
  3. Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 377-391. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch28.
  4. Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing hardness on an extremely popular conjecture. SIAM Journal on Computing, 47(3):1098-1122, 2018. URL: https://doi.org/10.1137/15M1050987.
  5. Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian Schulz, and Darren Strash. Recent advances in practical data reduction. CoRR, abs/2012.12594, 2020. URL: http://arxiv.org/abs/2012.12594.
  6. Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429-449, 2014. URL: https://doi.org/10.1137/130920526.
  7. Anadi Agrawal and Pawel Gawrychowski. A faster subquadratic algorithm for the longest common increasing subsequence problem. In Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), volume 181 of LIPIcs, pages 4:1-4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2020.4.
  8. Jérémy Barbay. Adaptive computation of the discrete fréchet distance. In Proceeding of the 25th International Symposium on String Processing and Information Retrieval (SPIRE 2018), volume 11147 of Lecture Notes in Computer Science, pages 50-60. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-00479-8_5.
  9. Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized aspects of triangle enumeration. Journal of Computer and System Sciences, 103:61-77, 2019. URL: https://doi.org/10.1016/j.jcss.2019.02.004.
  10. Aaron Bernstein. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 742-755. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.61.
  11. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423-434, 2009. URL: https://doi.org/10.1016/j.jcss.2009.04.001.
  12. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  13. Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2014), pages 661-670. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.76.
  14. Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and dynamic time warping. In Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS 2015), pages 79-97. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.15.
  15. Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pages 1216-1235. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.79.
  16. Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. ACM Transactions on Algorithms, 17(1):2:1-2:14, 2021. URL: https://doi.org/10.1145/3402926.
  17. Yijia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernelizations and other preprocessing procedures. Theory of Computing Systems, 48(4):803-839, 2011. URL: https://doi.org/10.1007/s00224-010-9270-y.
  18. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  19. David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Transactions on Algorithms, 15(3):33:1-33:57, 2019. URL: https://doi.org/10.1145/3310228.
  20. Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. Journal of the ACM, 61(4):23:1-23:27, 2014. URL: https://doi.org/10.1145/2629620.
  21. Andrew Drucker. New limits to classical and quantum instance compression. SIAM Journal on Computing, 44(5):1443-1479, 2015. URL: https://doi.org/10.1137/130927115.
  22. Guillaume Ducoffe. Maximum matching in almost linear time on graphs of bounded clique-width. In Proceedings of the 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of LIPIcs, pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.15.
  23. Lech Duraj. A sub-quadratic algorithm for the longest common increasing subsequence problem. In Proceedings of the 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of LIPIcs, pages 41:1-41:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.41.
  24. Lech Duraj, Marvin Künnemann, and Adam Polak. Tight conditional lower bounds for longest common increasing subsequence. Algorithmica, 81(10):3968-3992, 2019. URL: https://doi.org/10.1007/s00453-018-0485-7.
  25. Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical report, Technische Universität Wien, 1994. Google Scholar
  26. David Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652-673, 1998. URL: https://doi.org/10.1137/S0097539795290477.
  27. Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs, Hendrik Molter, and Rolf Niedermeier. Diminishable parameterized problems and strict polynomial kernelization. Computability, 9(1):1-24, 2020. URL: https://doi.org/10.3233/COM-180220.
  28. Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Niedermeier, and Nimrod Talmon. When can graph hyperbolicity be computed in linear time? Algorithmica, 81(5):2016-2045, 2019. URL: https://doi.org/10.1007/s00453-018-0522-6.
  29. Till Fluschnik, George B. Mertzios, and André Nichterlein. Kernelization lower bounds for finding constant-size subgraphs. In Proceedings of the 14th Conference on Computability in Europe (CiE 2018), volume 10936 of Lecture Notes in Computer Science, pages 183-193. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94418-0_19.
  30. Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and Marcin Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Transactions on Algorithms, 14(3):34:1-34:45, 2018. URL: https://doi.org/10.1145/3186898.
  31. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  32. Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps for NP. Journal of Computer and System Sciences, 77(1):91-106, 2011. Google Scholar
  33. Anka Gajentaan and Mark H. Overmars. On a class of O(n²) problems in computational geometry. Computational Geometry, 5:165-185, 1995. URL: https://doi.org/10.1016/0925-7721(95)00022-2.
  34. Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs. Theoretical Computer Science, 689:67-95, 2017. URL: https://doi.org/10.1016/j.tcs.2017.05.017.
  35. Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for sequence similarity problems. Discrete Applied Mathematics, 212:96-103, 2016. URL: https://doi.org/10.1016/j.dam.2015.10.040.
  36. Fabrizio Grandoni and Virginia Vassilevska Williams. Faster replacement paths and distance sensitivity oracles. ACM Transactions on Algorithms, 16(1):15:1-15:25, 2020. URL: https://doi.org/10.1145/3365835.
  37. Klaus Heeger, André Nichterlein, and Rolf Niedermeier. Parameterized lower bounds for problems in p via fine-grained cross-compositions. CoRR, abs/10.48550, 2023. Google Scholar
  38. Falko Hegerfeld and Stefan Kratsch. On adaptive algorithms for maximum matching. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of LIPIcs, pages 71:1-71:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.71.
  39. Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Finding all global minimum cuts in practice. In Proceedings of the 28th Annual European Symposium on Algorithms (ESA 2020), volume 173 of LIPIcs, pages 59:1-59:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.59.
  40. Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of the ACM, 24(4):664-675, 1977. URL: https://doi.org/10.1145/322033.322044.
  41. Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On the power of tree-depth for fully polynomial FPT algorithms. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96 of LIPIcs, pages 41:1-41:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.41.
  42. Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An efficient algorithm for K shortest simple paths. Networks, 12(4):411-427, 1982. URL: https://doi.org/10.1002/net.3230120406.
  43. Tomohiro Koana, Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data reduction for maximum matching on real-world graphs: Theory and experiments. ACM Journal of Experimental Algorithmics, 26:1.3:1-1.3:30, 2021. URL: https://doi.org/10.1145/3439801.
  44. Stefan Kratsch and Florian Nelles. Efficient and adaptive parameterized algorithms on modular decompositions. In Proceedings of the 26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of LIPIcs, pages 55:1-55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.55.
  45. Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms for computing longest common increasing subsequences. Journal of Discrete Algorithms, 9(4):314-325, 2011. URL: https://doi.org/10.1016/j.jda.2011.03.013.
  46. Eugene L. Lawler. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Management Sci., 18:401-405, 1971/72. URL: https://doi.org/10.1287/mnsc.18.7.401.
  47. George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time data reduction for maximum matching. Algorithmica, 82(12):3521-3565, 2020. URL: https://doi.org/10.1007/s00453-020-00736-0.
  48. Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Transactions on Algorithms, 8(4):33:1-33:11, 2012. URL: https://doi.org/10.1145/2344422.2344423.
  49. Shmuel Sifrony and Micha Sharir. A new efficient motion-planning algorithm for a rod in two-dimensional polygonal space. Algorithmica, 2:367-402, 1987. URL: https://doi.org/10.1007/BF01840368.
  50. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages 3447-3487. World Scientific, 2018. Google Scholar
  51. Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix, and triangle problems. Journal of the ACM, 65(5):27:1-27:38, 2018. URL: https://doi.org/10.1145/3186893.
  52. Gert Vegter. The visibility diagram: a data structure for visibility problems and motion planning. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory (Swat 1990), volume 447 of Lecture Notes in Computer Science, pages 97-110. Springer, 1990. URL: https://doi.org/10.1007/3-540-52846-6_81.
  53. R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM Journal on Computing, 47(5):1965-1985, 2018. URL: https://doi.org/10.1137/15M1024524.