Dynamic Data Structures for Parameterized String Problems

Authors Jędrzej Olkowski, Michał Pilipczuk , Mateusz Rychlicki , Karol Węgrzycki , Anna Zych-Pawlewicz



PDF
Thumbnail PDF

File

LIPIcs.STACS.2023.50.pdf
  • Filesize: 1 MB
  • 22 pages

Document Identifiers

Author Details

Jędrzej Olkowski
  • Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Poland
Michał Pilipczuk
  • Institute of Informatics, University of Warsaw, Poland
Mateusz Rychlicki
  • School of Computing, University of Leeds, UK
Karol Węgrzycki
  • Saarland University, Saarbrücken, Germany
  • Max Planck Institute for Informatics, Saarbrücken, Germany
Anna Zych-Pawlewicz
  • Institute of Informatics, University of Warsaw, Poland

Cite AsGet BibTex

Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-Pawlewicz. Dynamic Data Structures for Parameterized String Problems. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 50:1-50:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.STACS.2023.50

Abstract

We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance. We first consider the CLOSEST STRING problem, for which we design randomized dynamic data structures with amortized update times d^𝒪(d) and |Σ|^𝒪(d), respectively, where Σ is the alphabet and d is the assumed bound on the maximum distance. These are obtained by combining known static approaches to CLOSEST STRING with color-coding. Next, we note that from a result of Frandsen et al. [J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form 𝒪_k(log log n), where k is the parameter in question and n is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems DISJOINT FACTORS and EDIT DISTANCE. We also give explicit data structures for these problems, with worst-case update times 𝒪(k 2^k log log n) and 𝒪(k²log log n), respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al. [ICALP'21] can be used to show that obtaining update time 𝒪(f(k)) for DISJOINT FACTORS and EDIT DISTANCE is unlikely already for a constant value of the parameter k.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Predecessor queries
Keywords
  • Parameterized algorithms
  • Dynamic data structures
  • String problems
  • Closest String
  • Edit Distance
  • Disjoint Factors
  • Predecessor problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59-78. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.14.
  2. Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375-388. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897653.
  3. Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized problems and algorithms. ACM Trans. Algorithms, 16(4):45:1-45:46, 2020. URL: https://doi.org/10.1145/3395037.
  4. Antoine Amarilli, Louis Jachiet, and Charles Paperman. Dynamic membership for regular languages. In Proceedings of the 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 116:1-116:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.116.
  5. Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski. Dynamic and internal longest common substring. Algorithmica, 82(12):3707-3743, 2020. URL: https://doi.org/10.1007/s00453-020-00744-0.
  6. Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant factor. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 990-1001. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00096.
  7. Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). SIAM J. Comput., 47(3):1087-1097, 2018. URL: https://doi.org/10.1137/15M1053128.
  8. Manu Basavaraju, Fahad Panolan, Ashutosh Rai, M. S. Ramanujan, and Saket Saurabh. On the kernelization complexity of string problems. Theor. Comput. Sci., 730:21-31, 2018. URL: https://doi.org/10.1016/j.tcs.2018.03.024.
  9. Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 316-324. ACM, 2003. URL: https://doi.org/10.1145/780542.780590.
  10. Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related problems. J. Comput. Syst. Sci., 65(1):38-72, 2002. URL: https://doi.org/10.1006/jcss.2002.1822.
  11. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. URL: https://doi.org/10.1016/j.tcs.2011.04.039.
  12. Mikołaj Bojańczyk. Languages recognised by finite semigroups and their generalisations to objects such as trees and graphs, with an emphasis on definability in monadic second-order logic. In preparation, 2020. URL: https://www.mimuw.edu.pl/~bojan/papers/algebra-26-aug-2020.pdf.
  13. Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79-97. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.15.
  14. Panagiotis Charalampopoulos. Data Structures for Strings in the Internal and Dynamic Settings. PhD thesis, King’s College London, 2021. Google Scholar
  15. Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin, Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski, and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to detecting long paths and cycles. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 796-809. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.50.
  16. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  17. Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO properties in graphs with bounded tree-depth. In Proceedings of the 22th Annual European Symposium on Algorithms, ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 334-345. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_28.
  18. Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting subgraphs in sparse graphs. In Proceedings of the 13th International Symposium on Algorithms and Data Structures, WADS 2013, volume 8037 of Lecture Notes in Computer Science, pages 304-315. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40104-6_27.
  19. Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word problems. J. ACM, 44(2):257-271, 1997. URL: https://doi.org/10.1145/256303.256309.
  20. Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. J. Comput. Syst. Sci., 47(3):424-436, 1993. URL: https://doi.org/10.1016/0022-0000(93)90040-4.
  21. Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and Barna Saha. Gap edit distance via non-adaptive queries: Simple and optimal. CoRR, abs/2111.12706, 2021. URL: http://arxiv.org/abs/2111.12706.
  22. Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for Closest String and related problems. Algorithmica, 37(1):25-42, 2003. URL: https://doi.org/10.1007/s00453-003-1028-3.
  23. Alejandro Grez, Filip Mazowiecki, Michał Pilipczuk, Gabriele Puppis, and Cristian Riveros. Dynamic data structures for timed automata acceptance. In Proceedings of the 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, volume 214 of LIPIcs, pages 20:1-20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.20.
  24. Heikki Hyyrö, Kazuyuki Narisawa, and Shunsuke Inenaga. Dynamic edit distance table under a general weighted cost function. Journal of Discrete Algorithms, 34:2-17, 2015. URL: https://doi.org/10.1016/j.jda.2015.05.007.
  25. Dusan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold integer programming and applications. Math. Program., 184(1):1-34, 2020. URL: https://doi.org/10.1007/s10107-019-01402-2.
  26. Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison. SIAM Journal on Computing, 27(2):557-582, 1998. Google Scholar
  27. Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. J. Comput. Syst. Sci., 37(1):63-78, 1988. URL: https://doi.org/10.1016/0022-0000(88)90045-1.
  28. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized problems. SIAM J. Comput., 47(3):675-702, 2018. URL: https://doi.org/10.1137/16M1104834.
  29. Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and substring problems. SIAM J. Comput., 39(4):1432-1443, 2009. URL: https://doi.org/10.1137/080739069.
  30. Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining CMSO₂ properties on dynamic structures with bounded feedback vertex number. CoRR, abs/2107.06232, 2021. URL: http://arxiv.org/abs/2107.06232.
  31. William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J. Comput. Syst. Sci., 20(1):18-31, 1980. URL: https://doi.org/10.1016/0022-0000(80)90002-1.
  32. Robert McNaughton and Seymour Papert. Counter-free automata. MIT Press, 1971. Google Scholar
  33. Kurt Mehlhorn, Stefan Näher, and Helmut Alt. A lower bound on the complexity of the union-split-find problem. SIAM J. Comput., 17(6):1093-1102, 1988. URL: https://doi.org/10.1137/0217070.
  34. Gonzalo Navarro. A guided tour to approximate string matching. ACM computing surveys (CSUR), 33(1):31-88, 2001. Google Scholar
  35. Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv., 53(5):105:1-105:35, 2020. URL: https://doi.org/10.1145/3409371.
  36. Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, et al. Fully dynamic data structure for lce queries in compressed space. arXiv preprint arXiv:1605.01488, 2016. Google Scholar
  37. Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-Pawlewicz. Dynamic data structures for parameterized string problems. CoRR, abs/2205.00441, 2022. URL: https://doi.org/10.48550/arXiv.2205.00441.
  38. Mihai Patrascu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and predecessor search. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 166-175. IEEE Computer Society, 2014. URL: https://doi.org/10.1109/FOCS.2014.26.
  39. Michał Pilipczuk. Tournaments and optimality: New results in parameterized complexity. PhD thesis, University of Bergen, 2013. Google Scholar
  40. Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control., 8(2):190-194, 1965. URL: https://doi.org/10.1016/S0019-9958(65)90108-7.
  41. Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. PhD thesis, MIT, 1974. Google Scholar
  42. Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett., 6(3):80-82, 1977. URL: https://doi.org/10.1016/0020-0190(77)90031-X.