LIPIcs.STACS.2024.45.pdf
- Filesize: 0.9 MB
- 17 pages
The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether two circuits over A compute the same function or not. This problem not only generalises the equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models the problem of checking identities in A. In this paper we prove that Ceqv(A) ∈ 𝖯, if A is a finite 2-nilpotent algebra from a congruence modular variety.
Feedback for Dagstuhl Publishing