Circuit Equivalence in 2-Nilpotent Algebras

Authors Piotr Kawałek , Michael Kompatscher , Jacek Krzaczkowski



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.45.pdf
  • Filesize: 0.9 MB
  • 17 pages

Document Identifiers

Author Details

Piotr Kawałek
  • Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria
  • Institute of Computer Science, University of Maria Curie-Skłodowska, Lublin, Poland
Michael Kompatscher
  • Department of Algebra, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Jacek Krzaczkowski
  • Institute of Computer Science, University of Maria Curie-Skłodowska, Lublin, Poland

Acknowledgements

We would like to thank Prof. Paweł Idziak for bringing us together in the spring of 2018 (by inviting the second author to Kraków), which ultimately lead to this publication.

Cite AsGet BibTex

Piotr Kawałek, Michael Kompatscher, and Jacek Krzaczkowski. Circuit Equivalence in 2-Nilpotent Algebras. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.45

Abstract

The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether two circuits over A compute the same function or not. This problem not only generalises the equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models the problem of checking identities in A. In this paper we prove that Ceqv(A) ∈ 𝖯, if A is a finite 2-nilpotent algebra from a congruence modular variety.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Complexity classes
Keywords
  • circuit equivalence
  • identity checking
  • nilpotent algebra

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Erhard Aichinger. Bounding the free spectrum of nilpotent algebras of prime power order. Israel Journal of Mathematics, 230(2):919-947, 2019. URL: https://doi.org/10.1007/s11856-019-1846-x.
  2. Erhard Aichinger and Peter Mayr. Polynomial clones on groups of order pq. Acta Mathematica Hungarica, 114(3):267-285, 2006. URL: https://doi.org/10.1007/s10474-006-0530-x.
  3. Erhard Aichinger and Nebojša Mudrinski. Some applications of higher commutators in Mal'cev algebras. Algebra universalis, 63(4):367-403, 2010. URL: https://doi.org/10.1007/s00012-010-0084-1.
  4. Jorge Almeida, Mikhail V. Volkov, and Svetlana V. Goldberg. Complexity of the identity checking problem for finite semigroups. Journal of Mathematical Sciences, 158(5):605-614, 2009. URL: https://doi.org/10.1007/s10958-009-9397-z.
  5. David Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform automata over groups. Information and Computation, 89(2):109-132, 1990. URL: https://doi.org/10.1016/0890-5401(90)90007-5.
  6. Clifford Bergman. Universal Algebra: Fundamentals and selected topics. CRC Press, 2011. Google Scholar
  7. Stanley Burris and John Lawrence. The equivalence problem for finite rings. Journal of Symbolic Computation, 15(1):67-71, 1993. URL: https://doi.org/10.1006/jsco.1993.1004.
  8. Stanley Burris and John Lawrence. Results on the equivalence problem for finite groups. Algebra Universalis, 52(4):495-500, 2005. URL: https://doi.org/10.1007/s00012-004-1895-8.
  9. Stefano Fioravanti. Closed sets of finitary functions between finite fields of coprime order. Algebra universalis, 81:52, 2020. published online. URL: https://doi.org/10.1007/s00012-020-00683-5.
  10. Attila Földvári and Gábor Horváth. The complexity of the equation solvability and equivalence problems over finite groups. International Journal of Algebra and Computation, 30(03):607-623, 2020. URL: https://doi.org/10.1142/S0218196720500137.
  11. Ralph Freese and Ralph McKenzie. Commutator theory for congruence modular varieties, volume 125. CUP Archive, 1987. Google Scholar
  12. Tomasz Gorazd and Jacek Krzaczkowski. The complexity of problems connected with two-element algebras. Reports on Mathematical Logic, 2011(46):91-108, 2011. Google Scholar
  13. Vince Grolmusz and Gábor Tardos. Lower bounds for (MOD_p-MOD_m) circuits. SIAM Journal on Computing, 29(4):1209-1222, 2000. URL: https://doi.org/10.1137/S0097539798340850.
  14. Christian Herrmann. Affine algebras in congruence modular varieties. Acta Universitatis Szegediensis, 41:119-125, 1979. Google Scholar
  15. Gábor Horváth. The complexity of the equivalence problem over finite rings. Glasgow Mathematical Journal, 54(1):193-199, 2012. URL: https://doi.org/10.1017/S001708951100053X.
  16. Gábor Horváth and Csaba Szabó. The complexity of checking identities over finite groups. International Journal of Algebra and Computation, 16(5):931-939, 2006. URL: https://doi.org/10.1142/S0218196706003256.
  17. Gábor Horváth and Csaba Szabó. The extended equivalence and equation solvability problems for groups. Discrete Mathematics & Theoretical Computer Science, 13(4):23-32, 2011. URL: https://doi.org/10.46298/dmtcs.536.
  18. Gábor Horváth and Csaba Szabó. Equivalence and equation solvability problems for the alternating group A₄. Journal of Pure and Applied Algebra, 216(10):2170-2176, 2012. URL: https://doi.org/10.1016/j.jpaa.2012.02.007.
  19. Harry B. Hunt III and Richard Edwin Stearns. The complexity of equivalence for commutative rings. Journal of Symbolic Computation, 10(5):411-436, 1990. URL: https://doi.org/10.1016/S0747-7171(08)80053-3.
  20. Paweł Idziak, Piotr Kawałek, Jacek Krzaczkowski, and Armin Weiß. Equation satisfiability in solvable groups. Theory of Computing Systems, 2022. URL: https://doi.org/10.1007/s00224-022-10082-z.
  21. Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Expressive power, satisfiability and equivalence of circuits over nilpotent algebras. In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1-17:15. EATCS, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.17.
  22. Pawel M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Intermediate problems in modular circuits satisfiability. In Proceedings of the 35th Annual Symposium on Logic in Computer Science (LICS), pages 578-590, 2020. URL: https://doi.org/10.1145/3373718.3394780.
  23. Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Satisfiability of Circuits and Equations over Finite Malcev Algebras. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1-37:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.37.
  24. Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Nonuniform deterministic finite automata over finite algebraic structures, 2024. Manuscript. Google Scholar
  25. Paweł M Idziak and Jacek Krzaczkowski. Satisfiability in multivalued circuits. SIAM Journal on Computing, 51(3):337-378, 2022. URL: https://doi.org/10.1137/18M122019.
  26. Piotr Kawałek and Armin Weiß. Violating constant degree hypothesis requires breaking symmetry, 2023. URL: https://arxiv.org/abs/2311.17440.
  27. Ondřej Klíma. Complexity issues of checking identities in finite monoids. Semigroup Forum, 79(3):435-444, 2009. URL: https://doi.org/10.1007/s00233-009-9180-y.
  28. Michael Kompatscher. CSAT and CEQV for nilpotent Maltsev algebras of Fitting length > 2, 2021. URL: https://arxiv.org/abs/2105.00689.
  29. Michael Kompatscher. CC-circuits and the expressive power of nilpotent algebras. Logical Methods in Computer Science, 18(2), 2022. URL: https://doi.org/10.46298/lmcs-18(2:12)2022.
  30. Andrew Moorhead. Higher commutator theory for congruence modular varieties. Journal of Algebra, 513:133-158, 2018. URL: https://doi.org/10.1016/j.jalgebra.2018.07.026.
  31. Bernhard Schwarz. The complexity of satisfiability problems over finite lattices. In Proceedings of the 21st Symposium on Theoretical Aspects of Computer Science (STACS), pages 31-43, 2004. URL: https://doi.org/10.1007/978-3-540-24749-4_4.
  32. Joel VanderWerf. Wreath products of algebras: generalizing the Krohn-Rhodes theorem to arbitrary algebras. Semigroup Forum, 52(1):93-100, 1996. URL: https://doi.org/10.1007/BF02574084.
  33. Armin Weiß. Hardness of Equations over Finite Solvable Groups Under the Exponential Time Hypothesis. In Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 102:1-102:19, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.102.