Sparsity-Parameterised Dynamic Edge Colouring

Authors Aleksander B. G. Christiansen , Eva Rotenberg , Juliette Vlieghe



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.20.pdf
  • Filesize: 0.76 MB
  • 18 pages

Document Identifiers

Author Details

Aleksander B. G. Christiansen
  • Technical University of Denmark, Lyngby, Denmark
Eva Rotenberg
  • Technical University of Denmark, Lyngby, Denmark
Juliette Vlieghe
  • Technical University of Denmark, Lyngby, Denmark

Acknowledgements

We thank Jacob Holm for his interest in this work, and for comments and improvements to an earlier version of this manuscript. We also thank an anonymous reviewer for their highly detailed feedback and suggestions for improvement.

Cite AsGet BibTex

Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-Parameterised Dynamic Edge Colouring. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.20

Abstract

We study the edge-colouring problem, and give efficient algorithms where the number of colours is parameterised by the graph’s arboricity, α. In a dynamic graph, subject to insertions and deletions, we give a deterministic algorithm that updates a proper Δ + O(α) edge colouring in poly(log n) amortized time. Our algorithm is fully adaptive to the current value of the maximum degree and arboricity. In this fully-dynamic setting, the state-of-the-art edge-colouring algorithms are either a randomised algorithm using (1 + ε)Δ colours in poly(log n, ε^{-1}) time per update, or the naive greedy algorithm which is a deterministic 2Δ -1 edge colouring with log(Δ) update time. Compared to the (1+ε)Δ algorithm, our algorithm is deterministic and asymptotically faster, and when α is sufficiently small compared to Δ, it even uses fewer colours. In particular, ours is the first Δ+O(1) edge-colouring algorithm for dynamic forests, and dynamic planar graphs, with polylogarithmic update time. Additionally, in the static setting, we show that we can find a proper edge colouring with Δ + 2α colours in O(mlog n) time. Moreover, the colouring returned by our algorithm has the following local property: every edge uv is coloured with a colour in {1, max{deg(u), deg(v)} + 2α}. The time bound matches that of the greedy algorithm that computes a 2Δ-1 colouring of the graph’s edges, and improves the number of colours when α is sufficiently small compared to Δ.

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
Keywords
  • edge colouring
  • arboricity
  • hierarchical partition
  • dynamic algorithms
  • amortized analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. In Proceedings of the Twenty-Seventh ACM Symposium on Principles of Distributed Computing, PODC '08, pages 25-34, New York, NY, USA, 2008. Association for Computing Machinery. URL: https://doi.org/10.1145/1400751.1400757.
  2. Leonid Barenboim, Michael Elkin, and Tzalik Maimon. Deterministic distributed (Δ + o(Δ))-edge-coloring, and vertex-coloring of graphs with bounded diversity. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 175-184. ACM, 2017. URL: https://doi.org/10.1145/3087801.3087812.
  3. Anton Bernshteyn. A Fast Distributed Algorithm for ((Δ+ 1))-Edge-Coloring. Journal of Combinatorial Theory, Series B, 152:319-352, 2022. URL: https://doi.org/10.1016/j.jctb.2021.10.004.
  4. Anton Bernshteyn and Abhishek Dhawan. Fast algorithms for vizing’s theorem on bounded degree graphs. CoRR, abs/2303.05408, 2023. URL: https://doi.org/10.48550/arXiv.2303.05408.
  5. Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amortized O(log ^2 n) replacements. J. ACM, 66(5):37:1-37:23, 2019. URL: https://doi.org/10.1145/3344999.
  6. Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai. Dynamic algorithms for graph coloring. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1-20. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.1.
  7. Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Arboricity-dependent algorithms for edge coloring. CoRR, abs/2311.08367, 2023. URL: https://doi.org/10.48550/arXiv.2311.08367.
  8. Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Density-sensitive algorithms for (Δ+1)-edge coloring. CoRR, abs/2307.02415, 2023. URL: https://doi.org/10.48550/arXiv.2307.02415.
  9. Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 173-182. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746592.
  10. Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia, editors, Algorithms and Data Structures, Lecture Notes in Computer Science, pages 773-782, Netherlands, 1999. Springer. 6th International Workshop on Algorithms and Data Structures. WADS 1999 ; Conference date: 11-08-1999 Through 14-08-1999. URL: https://doi.org/10.1007/3-540-48447-7_34.
  11. Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of distributed edge coloring with small palettes. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2633-2652. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.168.
  12. Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-parameterised dynamic edge colouring. CoRR, abs/2311.10616, 2023. URL: https://doi.org/10.48550/arXiv.2311.10616.
  13. Aleksander Bjørn Grodt Christiansen. The power of multi-step vizing chains. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1013-1026. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585105.
  14. Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in O(E log D time. Combinatorica, 21(1):5-12, January 2001. URL: https://doi.org/10.1007/s004930170002.
  15. Peter Davies. Improved distributed algorithms for the lovász local lemma and edge coloring. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 4273-4295. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch163.
  16. Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved approximation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '19, pages 1937-1945, USA, 2019. Society for Industrial and Applied Mathematics. Google Scholar
  17. Thomas Erlebach and Klaus Jansen. The complexity of path coloring and call scheduling. Theoretical Computer Science, 255(1):33-50, 2001. URL: https://doi.org/10.1016/S0304-3975(99)00152-8.
  18. Harold N. Gabow, Takao Nishizeki, Oded Kariv, Daniel Leven, and Osamu Terada. Algorithms for edge-colouring graphs. Technical Report, 1985. Google Scholar
  19. Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic Distributed Edge-Coloring with Fewer Colors. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 418-430, 2018. Google Scholar
  20. Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic coloring of graphs with bounded arboricity, 2020. URL: https://doi.org/10.48550/arXiv.2002.10142.
  21. Ian Holyer. The np-completeness of edge-coloring. SIAM J. Comput., 10(4):718-720, 1981. URL: https://doi.org/10.1137/0210055.
  22. Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic graphs with worst-case time bounds. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 532-543. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_45.
  23. David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417-427, July 1983. URL: https://doi.org/10.1145/2402.322385.
  24. C. St.J. A. Nash-Williams. Decomposition of Finite Graphs Into Forests. Journal of the London Mathematical Society, s1-39(1):12-12, January 1964. URL: https://doi.org/10.1112/jlms/s1-39.1.12.
  25. Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic MIS in uniformly sparse graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 92:1-92:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.92.
  26. David Peleg and Shay Solomon. Dynamic (1 + ε)-approximate matchings: A density-sensitive approach. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 712-729. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch51.
  27. K. S. Poh. On the linear vertex-arboricity of a planar graph. J. Graph Theory, 14(1):73-75, 1990. URL: https://doi.org/10.1002/jgt.3190140108.
  28. Corwin Sinnamon. A randomized algorithm for edge-colouring graphs in O(m√ n) time. CoRR, abs/1907.03201, 2019. URL: https://arxiv.org/abs/1907.03201.
  29. Hsin-Hao Su and Hoa T Vu. Towards the Locality of Vizing’s Theorem. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 355-364, 2019. Google Scholar
  30. V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32-41, May 1965. URL: https://doi.org/10.1007/BF01885700.