Stability in Graphs with Matroid Constraints

Authors Fedor V. Fomin , Petr A. Golovach , Tuukka Korhonen , Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.22.pdf
  • Filesize: 0.73 MB
  • 16 pages

Document Identifiers

Author Details

Fedor V. Fomin
  • University of Bergen, Norway
Petr A. Golovach
  • University of Bergen, Norway
Tuukka Korhonen
  • University of Bergen, Norway
Saket Saurabh
  • University of Bergen, Norway
  • The Institute of Mathematical Sciences, HBNI, Chennai, India

Cite AsGet BibTex

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh. Stability in Graphs with Matroid Constraints. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.22

Abstract

We study the following INDEPENDENT STABLE SET problem. Let G be an undirected graph and ℳ = (V(G), ℐ) be a matroid whose elements are the vertices of G. For an integer k ≥ 1, the task is to decide whether G contains a set S ⊆ V(G) of size at least k which is independent (stable) in G and independent in ℳ. This problem generalizes several well-studied algorithmic problems, including RAINBOW INDEPENDENT SET, RAIBOW MATCHING, and BIPARTITE MATCHING WITH SEPARATION. We show that - When the matroid ℳ is represented by the independence oracle, then for any computable function f, no algorithm can solve INDEPENDENT STABLE SET using f(k)⋅n^o(k) calls to the oracle. - On the other hand, when the graph G is of degeneracy d, then the problem is solvable in time 𝒪((d+1)^k ⋅ n), and hence is FPT parameterized by d+k. Moreover, when the degeneracy d is a constant (which is not a part of the input), the problem admits a kernel polynomial in k. More precisely, we prove that for every integer d ≥ 0, the problem admits a kernelization algorithm that in time n^𝒪(d) outputs an equivalent framework with a graph on dk^{𝒪(d)} vertices. A lower bound complements this when d is part of the input: INDEPENDENT STABLE SET does not admit a polynomial kernel when parameterized by k+d unless NP ⊆ coNP/poly. This lower bound holds even when ℳ is a partition matroid. - Another set of results concerns the scenario when the graph G is chordal. In this case, our computational lower bound excludes an FPT algorithm when the input matroid is given by its independence oracle. However, we demonstrate that INDEPENDENT STABLE SET can be solved in 2^𝒪(k)⋅‖ℳ‖^𝒪(1) time when ℳ is a linear matroid given by its representation. In the same setting, INDEPENDENT STABLE SET does not have a polynomial kernel when parameterized by k unless NP ⊆ coNP/poly.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Matroids and greedoids
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • frameworks
  • independent stable sets
  • parameterized complexity
  • kernelization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ron Aharoni, Eli Berger, Maria Chudnovsky, David M. Howard, and Paul D. Seymour. Large rainbow matchings in general graphs. Eur. J. Comb., 79:222-227, 2019. URL: https://doi.org/10.1016/J.EJC.2019.01.012.
  2. Ron Aharoni, Eli Berger, and Ran Ziv. Independent systems of representatives in weighted graphs. Combinatorica, 27(3):253-267, 2007. Google Scholar
  3. Ron Aharoni, Joseph Briggs, Jinha Kim, and Minki Kim. Rainbow independent sets in certain classes of graphs. Journal of Graph Theory, 104(3):557-584, 2023. Google Scholar
  4. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522-539. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
  5. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discret. Math., 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  6. Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput., 31(1):212-232, 2001. URL: https://doi.org/10.1137/S0097539799359683.
  7. Vincent Bouchitté and Ioan Todinca. Listing all potential maximal cliques of a graph. Theor. Comput. Sci., 276(1-2):17-32, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00007-X.
  8. Hajo Broersma, Ton Kloks, Dieter Kratsch, and Haiko Müller. Independent sets in asteroidal triple-free graphs. SIAM J. Discret. Math., 12(2):276-287, 1999. URL: https://doi.org/10.1137/S0895480197326346.
  9. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  10. Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems on graphs with small degeneracy. ACM Trans. Algorithms, 13(3):43:1-43:22, 2017. URL: https://doi.org/10.1145/3108239.
  11. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  12. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  13. Arthur A. Drisko. Transversals in row-latin rectangles. Journal of Combinatorial Theory, Series A, 84(2):181-195, 1998. URL: https://doi.org/10.1006/jcta.1998.2894.
  14. Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh. Stability in graphs with matroid constraints, 2024. URL: https://arxiv.org/abs/2404.03979.
  15. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1-29:60, 2016. URL: https://doi.org/10.1145/2886094.
  16. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. Google Scholar
  17. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  18. Alessandra Graf, David G. Harris, and Penny Haxell. Algorithms for weighted independent transversals and strong colouring. ACM Trans. Algorithms, 18(1):1:1-1:16, 2022. URL: https://doi.org/10.1145/3474057.
  19. Alessandra Graf and Penny Haxell. Finding independent transversals efficiently. Comb. Probab. Comput., 29(5):780-806, 2020. URL: https://doi.org/10.1017/S0963548320000127.
  20. Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial optimization, volume 2. Springer Science & Business Media, 2012. Google Scholar
  21. Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Parameterized algorithms and kernels for rainbow matching. Algorithmica, 81(4):1684-1698, 2019. URL: https://doi.org/10.1007/S00453-018-0497-3.
  22. Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Quadratic vertex kernel for rainbow matching. Algorithmica, 82(4):881-897, 2020. URL: https://doi.org/10.1007/S00453-019-00618-0.
  23. Penny Haxell. On forming committees. The American Mathematical Monthly, 118(9):777-788, 2011. Google Scholar
  24. Alon Itai, Michael Rodeh, and Steven L. Tanimoto. Some matching problems for bipartite graphs. J. ACM, 25(4):517-525, 1978. URL: https://doi.org/10.1145/322092.322093.
  25. Jinha Kim, Minki Kim, and O-joung Kwon. Rainbow independent sets on dense graph classes. Discrete Applied Mathematics, 312:45-51, 2022. Google Scholar
  26. Van Bang Le and Florian Pfender. Complexity results for rainbow matchings. Theor. Comput. Sci., 524:27-33, 2014. URL: https://doi.org/10.1016/J.TCS.2013.12.013.
  27. Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1-14:20, 2018. URL: https://doi.org/10.1145/3170444.
  28. L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45-86, 1977. Google Scholar
  29. László Lovász. Graphs and geometry, volume 65 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2019. URL: https://doi.org/10.1090/coll/065.
  30. Pasin Manurangsi, Erel Segal-Halevi, and Warut Suksompong. On maximum bipartite matching with separation. Inf. Process. Lett., 182:106388, 2023. URL: https://doi.org/10.1016/J.IPL.2023.106388.
  31. Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci., 410(44):4471-4479, 2009. URL: https://doi.org/10.1016/j.tcs.2009.07.027.
  32. David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417-427, 1983. URL: https://doi.org/10.1145/2402.322385.
  33. George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B, 28(3):284-304, 1980. URL: https://doi.org/10.1016/0095-8956(80)90074-X.
  34. James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011. URL: https://doi.org/10.1093/acprof:oso/9780198566946.001.0001.