Near-Optimal epsilon-Kernel Construction and Related Problems

Authors Sunil Arya, Guilherme D. da Fonseca, David M. Mount



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2017.10.pdf
  • Filesize: 0.56 MB
  • 15 pages

Document Identifiers

Author Details

Sunil Arya
Guilherme D. da Fonseca
David M. Mount

Cite AsGet BibTex

Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Near-Optimal epsilon-Kernel Construction and Related Problems. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.10

Abstract

The computation of (i) eps-kernels, (ii) approximate diameter, and (iii) approximate bichromatic closest pair are fundamental problems in geometric approximation. In each case the input is a set of points in d-dimensional space for a constant d and an approximation parameter eps > 0. In this paper, we describe new algorithms for these problems, achieving significant improvements to the exponent of the eps-dependency in their running times, from roughly d to d/2 for the first two problems and from roughly d/3 to d/4 for problem (iii). These results are all based on an efficient decomposition of a convex body using a hierarchy of Macbeath regions, and contrast to previous solutions that decomposed the space using quadtrees and grids. By further application of these techniques, we also show that it is possible to obtain near-optimal preprocessing time for the most efficient data structures for (iv) approximate nearest neighbor searching, (v) directional width queries, and (vi) polytope membership queries.
Keywords
  • Approximation
  • diameter
  • kernel
  • coreset
  • nearest neighbor
  • polytope membership
  • bichromatic closest pair
  • Macbeath regions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J. Assoc. Comput. Mach., 51:606-635, 2004. Google Scholar
  2. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry. MSRI Publications, 2005. Google Scholar
  3. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189-201, 1992. Google Scholar
  4. S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579-586, 2011. URL: http://dx.doi.org/10.1145/1993636.1993713.
  5. S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal area-sensitive bounds for polytope approximation. In Proc. 28th Annu. Sympos. Comput. Geom., pages 363-372, 2012. Google Scholar
  6. S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. In Proc. 32nd Internat. Sympos. Comput. Geom., pages 11:1-11:15, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.11.
  7. S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017. Google Scholar
  8. S. Arya, T. Malamatos, and D. M. Mount. The effect of corners on the complexity of approximate range searching. Discrete Comput. Geom., 41:398-443, 2009. Google Scholar
  9. S. Arya and D. M. Mount. A fast and simple algorithm for computing approximate Euclidean minimum spanning trees. In Proc. 27th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1220-1233, 2016. Google Scholar
  10. S. Arya, D. M. Mount, and J. Xia. Tight lower bounds for halfspace range searching. Discrete Comput. Geom., 47:711-730, 2012. URL: http://dx.doi.org/10.1007/s00454-012-9412-x.
  11. Sunil Arya and Timothy M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos. Comput. Geom., pages 416-425, 2014. Google Scholar
  12. I. Bárány. The technique of M-regions and cap-coverings: A survey. Rend. Circ. Mat. Palermo, 65:21-38, 2000. Google Scholar
  13. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms, 38(1):91-109, 2001. Google Scholar
  14. J. L. Bentley, M. G. Faust, and F. P. Preparata. Approximation algorithms for convex hulls. Commun. ACM, 25(1):64-68, 1982. URL: http://dx.doi.org/10.1145/358315.358392.
  15. H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete Comput. Geom., 10:143-155, 1993. Google Scholar
  16. E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math. J., 16:852-853, 1976. Google Scholar
  17. T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20-35, 2006. URL: http://dx.doi.org/10.1016/j.comgeo.2005.10.002.
  18. T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1-15, 2017. Google Scholar
  19. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory, 10(3):227-236, 1974. Google Scholar
  20. K. Dutta, A. Ghosh, B. Jartoux, and N. H. Mustafa. Shallow packings, semialgebraic set systems, Macbeath regions and polynomial partitioning. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 38:1-15, 2017. Google Scholar
  21. G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika, 17:1-20, 1970. Google Scholar
  22. F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204. Interscience Publishers, Inc., New York, 1948. Google Scholar
  23. S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair problem. Information and Computation, 118(1):34-37, 1995. Google Scholar
  24. A. M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269-293, 1952. Google Scholar
  25. N. H. Mustafa and S. Ray. Near-optimal generalisations of a theorem of Macbeath. In Proc. 31st Internat. Sympos. on Theoret. Aspects of Comp. Sci., pages 578-589, 2014. Google Scholar