Document

# Computing the Geometric Intersection Number of Curves

## File

LIPIcs.SoCG.2017.35.pdf
• Filesize: 0.64 MB
• 15 pages

## Cite As

Vincent Despré and Francis Lazarus. Computing the Geometric Intersection Number of Curves. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.35

## Abstract

The geometric intersection number of a curve on a surface is the minimal number of self-intersections of any homotopic curve, i.e. of any curve obtained by continuous deformation. Given a curve c represented by a closed walk of length at most l on a combinatorial surface of complexity n we describe simple algorithms to (1) compute the geometric intersection number of c in O(n+ l^2) time, (2) construct a curve homotopic to c that realizes this geometric intersection number in O(n+l^4) time, (3) decide if the geometric intersection number of c is zero, i.e. if c is homotopic to a simple curve, in O(n+l log^2 l) time. To our knowledge, no exact complexity analysis had yet appeared on those problems. An optimistic analysis of the complexity of the published algorithms for problems (1) and (3) gives at best a O(n+g^2l^2) time complexity on a genus g surface without boundary. No polynomial time algorithm was known for problem (2). Interestingly, our solution to problem (3) is the first quasi-linear algorithm since the problem was raised by Poincare more than a century ago. Finally, we note that our algorithm for problem (1) extends to computing the geometric intersection number of two curves of length at most l in O(n+ l^2) time.
##### Keywords
• computational topology
• curves on surfaces
• combinatorial geodesic

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Chris Arettines. A combinatorial algorithm for visualizing representatives with minimal self-intersection. J. Knot Theor. Ramif., 24(11):1-17, 2015.
2. Joan S. Birman and Caroline Series. An algorithm for simple curves on surfaces. J. London Math. Soc., 29(2):331-342, 1984.
3. Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. In Proc. 32nd Int'l Symp. Comput. Geom. (SoCG), volume 51, pages 29:1-15, 2016.
4. Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In Proc. 26th ACM-SIAM Symp. Discrete Alg. (SODA), pages 1655-1670, 2015.
5. Moira Chas. Self-intersection numbers of length-equivalent curves on surfaces. Exp. Math., 23(3):271-276, 2014.
6. Moira Chas and Steven P. Lalley. Self-intersections in combinatorial topology: statistical structure. Invent. Math., 188(2):429-463, 2012.
7. David R. J. Chillingworth. Simple closed curves on surfaces. Bull. London Math. Soc., 1(3):310-314, 1969.
8. David R. J. Chillingworth. Winding numbers on surfaces. II. Math. Ann., 199(3):131-153, 1972.
9. Marshall Cohen and Martin Lustig. Paths of geodesics and geometric intersection numbers: I. In Combinatorial group theory and topology, volume 111 of Ann. Math. Stud., pages 479-500. Princeton Univ. Press, 1987.
10. Éric Colin de Verdière and Francis Lazarus. Optimal System of Loops on an Orientable Surface. Discrete Comput. Geom., 33(3):507-534, 2005.
11. Maurits de Graaf and Alexander Schrijver. Making curves minimally crossing by Reidemeister moves. J. Com. Theory B, 70(1):134-156, 1997.
12. Pierre De La Harpe. Topologie, théorie des groupes et problèmes de décision: célébration d'un article de max dehn de 1910. Gazette des mathématiciens, 125:41-75, 2010.
13. Tamal K. Dey and Sumanta Guha. Transforming Curves on Surfaces. J. Comput. and Syst. Sci., 58(2):297-325, 1999.
14. David Epstein and Derek Holt. The linearity of the conjugacy problem in word-hyperbolic groups. Int'l J. Algebr. Comput., 16(02):287-305, 2006.
15. Jeff Erickson and Kim Whittelsey. Transforming curves on surfaces redux. In Proc. 24th ACM-SIAM Symp. Discrete Alg. (SODA), 2013.
16. Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton Univ. Press, 2012.
17. Steve M. Gersten and Hamish B. Short. Small cancellation theory and automatic groups. Invent. Math., 102:305-334, 1990.
18. Daciberg L. Gonçalves, Elena Kudryavtseva, and Heiner Zieschang. An algorithm for minimal number of (self-)intersection points of curves on surfaces. In Proc. Seminar on Vector and Tensor Analysis, volume 26, pages 139-167, 2005.
19. Joel Hass and Peter Scott. Intersections of curves on surfaces. Isr. J. Math., 51(1-2):90-120, 1985.
20. Joel Hass and Peter Scott. Configurations of curves and geodesics on surfaces. Geometry and Topology Monographs, 2:201-213, 1999.
21. Donald E. Knuth, James H. Morris, Jr, and Vaughan R. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6(2):323-350, 1977.
22. Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proc. 53rd IEEE Symp. Found. Comput. Sci. (FOCS), pages 440-449, 2012.
23. Martin Lustig. Paths of geodesics and geometric intersection numbers: II. In Combinatorial group theory and topology, volume 111 of Ann. of Math. Stud., pages 501-543. Princeton Univ. Press, 1987.
24. Maryam Mirzakhani. Growth of the number of simple closed geodesies on hyperbolic surfaces. Ann. Math., pages 97-125, 2008.
25. Maryam Mirzakhani. Counting mapping class group orbits on hyperbolic surfaces. Preprint http://arxiv.org/pdf/1601.03342, January 2016.
26. Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Studies in the Mathematical Sciences. Johns Hopkins Univ. Press, 2001.
27. Max Neumann-Coto. A characterization of shortest geodesics on surfaces. Algebr. Geom. Topol., 1:349-368, 2001.
28. J. M. Paterson. A combinatorial algorithm for immersed loops in surfaces. Topol. Appl., 123(2):205-234, 2002.
29. Henri Poincaré. Cinquième complément à l'analysis situs. Rendiconti del Circolo Matematico di Palermo, 18(1):45-110, 1904.
30. Bruce L. Reinhart. Algorithms for Jordan curves on compact surfaces. Ann. Math., pages 209-222, 1962.
31. Jenya Sapir. Bounds on the number of non-simple closed geodesics on a surface. Preprint http://arxiv.org/pdf/1505.07171, May 2015. URL: http://arxiv.org/abs/1505.07171.
32. Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Computing Dehn twists and geometric intersection numbers in polynomial time. In CCCG, pages 111-114, 2008.
X

Feedback for Dagstuhl Publishing