Document

# Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

## File

LIPIcs.SoCG.2017.40.pdf
• Filesize: 0.58 MB
• 15 pages

## Cite As

Khaled Elbassioni. Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.40

## Abstract

We consider the problem of finding a small hitting set in an infinite range space F=(Q,R) of bounded VC-dimension. We show that, under reasonably general assumptions, the infinite-dimensional convex relaxation can be solved (approximately) efficiently by multiplicative weight updates. As a consequence, we get an algorithm that finds, for any delta>0, a set of size O(s_F(z^*_F)) that hits (1-delta)-fraction of R (with respect to a given measure) in time proportional to log(1/delta), where s_F(1/epsilon) is the size of the smallest epsilon-net the range space admits, and z^*_F is the value of the fractional optimal solution. This exponentially improves upon previous results which achieve the same approximation guarantees with running time proportional to poly(1/delta). Our assumptions hold, for instance, in the case when the range space represents the visibility regions of a polygon in the plane, giving thus a deterministic polynomial-time O(log z^*_F)-approximation algorithm for guarding (1-delta)-fraction of the area of any given simple polygon, with running time proportional to polylog(1/delta).
##### Keywords
• VC-dimension
• approximation algorithms
• fractional covering
• multiplicative weights update
• art gallery problem
• polyhedral separators
• geometric cove

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. P. K. Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers. In SoCG'14, pages 271-279, 2014.
2. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2008.
3. B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes. SIAM Journal on Computing, 39(7):3248-3282, 2010.
4. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete & Computational Geometry, 8(3):295-313, 1992.
5. S. Basu, R. Pollack, and M. Roy. On the combinatorial and algebraic complexity of quantifier elimination. J. ACM, 43(6):1002-1045, 1996.
6. É. Bonnet and T. Miltzow. An approximation algorithm for the art gallery problem. In EuroCG'16, also available online as: https://arxiv.org/abs/1607.05527, 2016.
7. H. Brönnimann, B. Chazelle, and J. Matoušek. Product range spaces, sensitive sampling, and derandomization. SIAM Journal on Computing, 28(5):1552-1575, 1999.
8. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete &Computational Geometry, 14(4):463-479, 1995.
9. T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In SODA'12, pages 1576-1585, 2012.
10. B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York, NY, USA, 2000.
11. B. Chazelle and J.Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension. Journal of Algorithms, 21(3):579-597, 1996.
12. O. Cheong, A. Efrat, and S. Har-Peled. Finding a guard that sees most and a shop that sells most. Discrete & Computational Geometry, 37(4):545-563, 2007.
13. V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233-235, 1979.
14. K. L. Clarkson. Algorithms for polytope covering and approximation. In WADS'93, pages 246-252, 1993.
15. K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set cover. Discrete &Computational Geometry, 37(1):43-58, 2006.
16. A. Deshpande, T. Kim, E. D. Demaine, and S. E. Sarma. A pseudopolynomial time O(log n)-approximation algorithm for art gallery problems. In WADS'07, pages 163-174, 2007.
17. I. Dinur and D. Steurer. Analytical approach to parallel repetition. In STOC'14, pages 624-633, 2014.
18. A. Efrat and S. Har-Peled. Guarding galleries and terrains. Inf. Process. Lett., 100(6):238-245, 2006.
19. G. Even, D. Rawitz, and S. (M.) Shahar. Hitting sets when the VC-dimension is small. Inf. Process. Lett., 95(2):358-362, 2005.
20. S. K. Ganjugunte. Geometric Hitting Sets and Their Variants. PhD thesis, Duke University, USA, 2011.
21. N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM J. Comput., 37(2):630-652, 2007.
22. S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete Applied Mathematics, 158(6):718-722, 2010.
23. A. Gilbers and R. Klein. A new upper bound for the VC-dimension of visibility regions. Computational Geometry, 47(1):61-74, 2014.
24. R. Glück. Covering polygons with rectangles. In EuroCG'16, 2016.
25. D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput., 5(1/2):37-64, 1988.
26. S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete & Computational Geometry, 45(3):462-496, 2011.
27. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2:127-151, 1987.
28. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM, 32(1):130-136, 1985.
29. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9(3):256-278, 1974.
30. J. King and D. G. Kirkpatrick. Improved approximation for guarding simple galleries from the perimeter. Discrete & Computational Geometry, 46(2):252-269, 2011.
31. J. Komlós, J. Pach, and G. Woeginger. Almost tight bounds for ε-nets. Discrete & Computational Geometry, 7(2):163-173, March 1992.
32. S. Laue. Geometric set cover and hitting sets for polytopes in ℝ³. In STACS'08, pages 479-490, 2008.
33. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13(4):383-390, 1975.
34. J. Matoušek. Cutting hyperplane arrangements. Discrete & Computational Geometry, 6(3):385-406, 1991.
35. J. Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169-186, 1992.
36. J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: Small ε-nets for disks and halfspaces. In SoCG'90, pages 16-22, 1990.
37. J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral objects. Computational Geometry, 5(2):95-114, 1995.
38. S. Ntafos and M. Tsoukalas. Optimum placement of guards. Information Sciences, 76(1-2):141-150, 1994.
39. J. Pach and G. Woeginger. Some new bounds for Epsilon-nets. In SoCG'90, pages 10-15, 1990.
40. E. Pyrga and S. Ray. New existence proofs ε-nets. In SoCG'08, pages 199-207, 2008.
41. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. J. Symb. Comput., 13(3):255-352, 1992.
42. N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):145-147, 1972.
43. S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math., 41(1):247-261, 1972.
44. N. H. Sleumer. Output-sensitive cell enumeration in hyperplane arrangements. Nordic J. of Computing, 6(2):137-147, 1999.
45. P. Valtr. Guarding galleries where no point sees a small area. Israel Journal of Mathematics, 104(1):1-16, 1998.
46. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability &Its Applications, 16(2):264-280, 1971.
47. K. Varadarajan. Epsilon nets and union complexity. In SoCG'09, pages 11-16, 2009.
X

Feedback for Dagstuhl Publishing