Tracing Isomanifolds in ℝ^d in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations

Authors Jean-Daniel Boissonnat, Siargey Kachanovich, Mathijs Wintraecken



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2021.17.pdf
  • Filesize: 1.88 MB
  • 16 pages

Document Identifiers

Author Details

Jean-Daniel Boissonnat
  • Université Côte d'Azur, Inria, Sophia-Antipolis, France
Siargey Kachanovich
  • Université Côte d'Azur, Inria, Sophia-Antipolis, France
Mathijs Wintraecken
  • IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria

Acknowledgements

We thank Dominique Attali, Guilherme de Fonseca, Arijit Ghosh, Vincent Pilaud and Aurélien Alvarez for their comments and suggestions. We also acknowledge the reviewers.

Cite AsGet BibTex

Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Tracing Isomanifolds in ℝ^d in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.SoCG.2021.17

Abstract

Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Coxeter triangulation
  • Kuhn triangulation
  • permutahedron
  • PL-approximations
  • isomanifolds/solution manifolds/isosurfacing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eugene Allgower and Kurt Georg. Estimates for piecewise linear approximations of implicitly defined manifolds. Applied Mathematics Letters, 2(2):111-115, 1989. URL: https://doi.org/10.1016/0893-9659(89)90001-3.
  2. Eugene Allgower and Kurt Georg. Numerical continuation methods: an introduction, volume 13. Springer Science & Business Media, 1990. URL: https://doi.org/10.1007/978-3-642-61257-2.
  3. Eugene Allgower and Phillip H. Schmidt. An algorithm for piecewise-linear approximation of an implicitly defined manifold. SIAM Journal on Numerical Analysis, 22(2):322-346, 1985. URL: https://doi.org/10.1137/0722020.
  4. Aurélien Alvarez and Bertrand Deroin. Dynamique et topologie du feuilletage de Jouanolou. Preprint, 2019. Google Scholar
  5. Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and Topological Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2018. URL: https://doi.org/10.1017/9781108297806.
  6. Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential Delaunay complexes. Discrete & Computational Geometry, 51(1):221-267, 2014. URL: https://doi.org/10.1007/s00454-013-9557-2.
  7. Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Triangulating submanifolds: An elementary and quantified version of whitney’s method. Discrete & Computational Geometry, pages 1-49, 2020. URL: https://doi.org/10.1007/s00454-020-00250-8.
  8. Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Tracing Isomanifolds in ℝ^d in Time Polynomial in d using Coxeter-Freudenthal-Kuhn Triangulations. Full version of this paper, 2021. URL: https://hal.inria.fr/hal-03006663.
  9. Jean-Daniel Boissonnat and Mathijs Wintraecken. The topological correctness of PL-approximations of isomanifolds. In 34th International Symposium on Computational Geometry, SoCG 2020, June 23-26, 2020, Zurich, Switzerland., 2020. Full version. URL: https://hal.inria.fr/hal-02386193.
  10. Yen-Chi Chen. Solution manifold and its statistical applications, 2020. arXiv:2002.05297. URL: http://arxiv.org/abs/2002.05297.
  11. Siu-Wing Cheng, Tamal K Dey, and Edgar A Ramos. Manifold reconstruction from point samples. In SODA, pages 1018-1027, 2005. Google Scholar
  12. Kenneth L. Clarkson. Tighter bounds for random projections of manifolds. In Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 39-48, 2008. URL: https://doi.org/10.1145/1377676.1377685.
  13. David P. Dobkin, Allan R. Wilks, Silvio V. F. Levy, and William P. Thurston. Contour tracing by piecewise linear approximations. ACM Transactions on Graphics (TOG), 9(4):389-423, 1990. URL: https://doi.org/10.1145/88560.88575.
  14. J. J. Duistermaat and J. A. C. Kolk. Multidimensional Real Analysis I: Differentiation. Number 86 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2004. URL: https://doi.org/10.1017/CBO9780511616716.
  15. B. Curtis Eaves. A course in triangulations for solving equations with deformations, volume 234. Lecture Notes in Economics and Mathematical Systems, 1984. URL: https://doi.org/10.1007/978-3-642-46516-1.
  16. Armin Eftekhari and Michael B. Wakin. What happens to a manifold under a bi-Lipschitz map? Discrete & Computational Geometry, 57(3):641-673, 2017. URL: https://doi.org/10.1007/s00454-016-9847-6.
  17. A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, 2009. URL: https://doi.org/10.1007/978-1-84882-406-5.
  18. GUDHI Project. URL: http://gudhi.gforge.inria.fr/doc/latest/.
  19. Siargey Kachanovich. Meshing submanifolds using Coxeter triangulations. Theses, COMUE Université Côte d'Azur (2015 - 2019), 2019. URL: https://hal.inria.fr/tel-02419148.
  20. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. ACM siggraph computer graphics, 21(4):163-169, 1987. URL: https://doi.org/10.1145/37401.37422.
  21. Chohong Min. Simplicial isosurfacing in arbitrary dimension and codimension. Journal of Computational Physics, 190(1):295-310, 2003. URL: https://doi.org/10.1016/S0021-9991(03)00275-4.
  22. Timothy S. Newman and Hong Yi. A survey of the marching cubes algorithm. Computers & Graphics, 30(5):854-879, 2006. URL: https://doi.org/10.1016/j.cag.2006.07.021.
  23. James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several variables. Classics in Applied Mathematics. SIAM, 2000. URL: https://doi.org/10.1137/1.9780898719468.
  24. Alexander M Ostrowski. Solution of Equations and Systems of Equations: Pure and Applied Mathematics: A Series of Monographs and Textbooks, Vol. 9, volume 9. Elsevier, 2016. Google Scholar
  25. Michael J. Todd. The computation of fixed points and applications, volume 124. Lecture Notes in Economics and Mathematical Systems, 1976. URL: https://doi.org/10.1007/978-3-642-50327-6.
  26. Nakul Verma. A note on random projections for preserving paths on a manifold. Technical Report Tech. Report CS2011-0971, UC San Diego, 2011. Google Scholar
  27. Rephael Wenger. Isosurfaces: geometry, topology, and algorithms. AK Peters/CRC Press, 2013. Google Scholar
  28. H. Whitney. Geometric Integration Theory. Princeton University Press, 1957. URL: https://doi.org/10.1515/9781400877577.