We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an O(1)-approximation in sublinear update time for set cover for axis-aligned squares in 2D . More precisely, we obtain randomized update time O(n^{2/3+δ}) for an arbitrarily small constant δ > 0. Previously, a dynamic geometric set cover data structure with sublinear update time was known only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG 2020]. If only an approximate size of the solution is needed, then we can also obtain sublinear amortized update time for disks in 2D and halfspaces in 3D . As a byproduct, our techniques for dynamic set cover also yield an optimal randomized O(nlog n)-time algorithm for static set cover for 2D disks and 3D halfspaces, improving our earlier O(nlog n(log log n)^{O(1)}) result [SoCG 2020].
@InProceedings{chan_et_al:LIPIcs.SoCG.2021.25, author = {Chan, Timothy M. and He, Qizheng}, title = {{More Dynamic Data Structures for Geometric Set Cover with Sublinear Update Time}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {25:1--25:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.25}, URN = {urn:nbn:de:0030-drops-138244}, doi = {10.4230/LIPIcs.SoCG.2021.25}, annote = {Keywords: Geometric set cover, approximation algorithms, dynamic data structures, sublinear algorithms, random sampling} }
Feedback for Dagstuhl Publishing