Document

# Classifying Convex Bodies by Their Contact and Intersection Graphs

## File

LIPIcs.SoCG.2021.3.pdf
• Filesize: 1.23 MB
• 16 pages

## Acknowledgements

We thank Tillmann Miltzow for asking when the translates of two different convex bodies induce the same intersection graphs which inspired us to work on these problems.

## Cite As

Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Peter Michael Reichstein Rasmussen. Classifying Convex Bodies by Their Contact and Intersection Graphs. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.SoCG.2021.3

## Abstract

Let A be a convex body in the plane and A₁,…,A_n be translates of A. Such translates give rise to an intersection graph of A, G = (V,E), with vertices V = {1,… ,n} and edges E = {uv∣ A_u ∩ A_v ≠ ∅}. The subgraph G' = (V, E') satisfying that E' ⊂ E is the set of edges uv for which the interiors of A_u and A_v are disjoint is a unit distance graph of A. If furthermore G' = G, i.e., if the interiors of A_u and A_v are disjoint whenever u≠ v, then G is a contact graph of A. In this paper, we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies A and B are equivalent if there exists a linear transformation B' of B such that for any slope, the longest line segments with that slope contained in A and B', respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of A and B are the same if and only if A and B are equivalent. We prove the same statement for unit distance and intersection graphs.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Computational geometry
• Mathematics of computing → Graph theory
• Mathematics of computing → Discrete mathematics
##### Keywords
• convex body
• contact graph
• intersection graph

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Peter Michael Reichstein Rasmussen. Classifying convex bodies by their contact and intersection graphs, 2019. Preprint. URL: http://arxiv.org/abs/1902.01732.
2. Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow. Maximum clique in disk-like intersection graphs. Preprint, 2020. URL: http://arxiv.org/abs/2003.02583.
3. Károly Böröczky Jr. Finite packing and covering, volume 154 of Cambridge Tracts in Mathematics. Cambridge University Press, 2004.
4. Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geometric intersection graphs. The Electronic Journal of Combinatorics, 24(1):1-19, 2017.
5. Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69-78, 2015.
6. Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber. Intersection graphs of rays and grounded segments. In Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer Science, pages 153-166, Cham, 2017. Springer International Publishing.
7. Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. Journal of Computational Geometry, 10(2), 2019.
8. Steven Chaplick, Stefan Felsner, Udo Hoffmann, and Veit Wiechert. Grid intersection graphs and order dimension. Order, 35:363-391, 2018.
9. Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165-177, 1990.
10. László Fejes Tóth. Lagerungen in der Ebene auf der Kugel und im Raum, volume 65 of Die Grundlehren der mathematischen Wissenschaften. Springer, second edition, 1972.
11. Stefan Felsner and Günter Rote. On primal-dual circle representations. In 34th European Workshop on Computational Geometry (EuroCG 2018), pages 72:1-72:6, 2018.
12. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete & Computational Geometry, 62(4):879-911, 2019.
13. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs. In 36th International Symposium on Computational Geometry (SoCG 2020), pages 44:1-44:18, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.44.
14. Stefan Funke, Alexander Kesselman, Ulrich Meyer, and Michael Segal. A simple improved distributed algorithm for minimum CDS in unit disk graphs. ACM Transactions on Sensor Networks, 2(3):444–453, 2006. URL: https://doi.org/10.1145/1167935.1167941.
15. György Pál Gehér. A contribution to the Aleksandrov conservative distance problem in two dimensions. Linear Algebra and its Applications, 481:280-287, 2015.
16. Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algorithmica, 20(3):277-293, 1998.
17. Svante Janson and Jan Kratochvíl. Thresholds for classes of intersection graphs. Discrete Mathematics, 108:307-326, 1992.
18. Victor Klee. Some new results on smoothness and rotundity in normed linear spaces. Mathematische Annalen, 139(1):51-63, 1959.
19. P. Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 88:141-164, 1936.
20. Jan Kratochivíl and Jiří Matoušek. Intersection graphs of segments. Journal of Combinatorial Theory Series B, 62(2):289-315, 1994.
21. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25(2):59-68, 1995. URL: https://doi.org/10.1002/net.3230250205.
22. Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal of Combinatorial Theory, Series B, 103(1):114-143, 2013.
23. Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex polygon intersection graphs. SIAM Journal on Discrete Mathematics, 27(1):205-231, 2013.
24. Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition in unit disk graphs and algorithmic applications in parameterized complexity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 1035-1054, 2019.
25. Marco A. Peyrot-Solís, Giselle M. Galvan-Tejada, and Hildeberto Jardon-Aguilar. Proposal of a planar directional UWB antenna for any desired operational bandwidth. International Journal of Antennas and Propagation, 2014:1-12, 2014.
26. Oded Schramm. Combinatorically prescribed packings and applications to conformal and quasiconformal maps. Preprint, 2007. URL: http://arxiv.org/abs/0709.0710.
27. Konrad Swanepoel. Combinatorial distance geometry in normed spaces. In Gergely Ambrus, Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, and János Pach, editors, New Trends in Intuitive Geometry, volume 27 of Bolyai Society Mathematical Studies. Springer, 2018.
28. G. Fejes Tóth. New Results in the Theory of Packing and Covering, pages 318-359. Birkhäuser Basel, Basel, 1983. URL: https://doi.org/10.1007/978-3-0348-5858-8_14.
29. Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C-H Huang. Minimum connected dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer Science, 352(1-3):1-7, 2006.
30. Tudor Zamfirescu. Nearly all convex bodies are smooth and strictly convex. Monatshefte für Mathematik, 103(1):57-62, 1987.