We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set 𝒟 of n unit disks inducing a unit-disk graph G_𝒟 and a number p ∈ [n], one can partition 𝒟 into p subsets 𝒟₁,… ,𝒟_p such that for every i ∈ [p] and every 𝒟' ⊆ 𝒟_i, the graph obtained from G_𝒟 by contracting all edges between the vertices in 𝒟_i $1𝒟' admits a tree decomposition in which each bag consists of O(p+|𝒟'|) cliques. Our theorem can be viewed as an analog for unit-disk graphs of the structural theorems for planar graphs and almost-embeddable graphs proved very recently by Marx et al. [SODA'22] and Bandyapadhyay et al. [SODA'22]. By applying our structural theorem, we give several new combinatorial and algorithmic results for unit-disk graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem (CDT) for unit-disk graphs, resolving an open question in the work Panolan et al. [SODA'19]. On the algorithmic side, we obtain a new FPT algorithm for bipartization (also known as odd cycle transversal) on unit-disk graphs, which runs in 2^{O(√k log k)} ⋅ n^{O(1)} time, where k denotes the solution size. Our algorithm significantly improves the previous slightly subexponential-time algorithm given by Lokshtanov et al. [SODA'22] (which works more generally for disk graphs) and is almost optimal, as the problem cannot be solved in 2^{o(√k)} ⋅ n^{O(1)} time assuming the ETH.
@InProceedings{bandyapadhyay_et_al:LIPIcs.SoCG.2022.11, author = {Bandyapadhyay, Sayan and Lochet, William and Lokshtanov, Daniel and Saurabh, Saket and Xue, Jie}, title = {{True Contraction Decomposition and Almost ETH-Tight Bipartization for Unit-Disk Graphs}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {11:1--11:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.11}, URN = {urn:nbn:de:0030-drops-160190}, doi = {10.4230/LIPIcs.SoCG.2022.11}, annote = {Keywords: unit-disk graphs, tree decomposition, contraction decomposition, bipartization} }
Feedback for Dagstuhl Publishing