Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

Authors Mincheol Kim, Chanyang Seo, Taehoon Ahn, Hee-Kap Ahn



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2022.51.pdf
  • Filesize: 1.31 MB
  • 15 pages

Document Identifiers

Author Details

Mincheol Kim
  • Department of Computer Science and Engineering, Pohang University of Science and Technology, South Korea
Chanyang Seo
  • Graduate School of Artificial Intelligence, Pohang University of Science and Technology, South Korea
Taehoon Ahn
  • Department of Computer Science and Engineering, Pohang University of Science and Technology, South Korea
Hee-Kap Ahn
  • Graduate School of Artificial Intelligence, Department of Computer Science and Engineering, Pohang University of Science and Technology, South Korea

Cite As Get BibTex

Mincheol Kim, Chanyang Seo, Taehoon Ahn, and Hee-Kap Ahn. Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.SoCG.2022.51

Abstract

We present an algorithm to compute the geodesic L₁ farthest-point Voronoi diagram of m point sites in the presence of n rectangular obstacles in the plane. It takes O(nm+n log n + mlog m) construction time using O(nm) space. This is the first optimal algorithm for constructing the farthest-point Voronoi diagram in the presence of obstacles. We can construct a data structure in the same construction time and space that answers a farthest-neighbor query in O(log(n+m)) time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Geodesic distance
  • L₁ metric
  • farthest-point Voronoi diagram

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete & Computational Geometry, 4(6):591-604, 1989. Google Scholar
  2. H. Alt, O. Cheong, and A. Vigneron. The Voronoi diagram of curved objects. Discrete & Computational Geometry, 34(3):439-453, 2005. Google Scholar
  3. B. Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica, 4(1):109-140, 1989. Google Scholar
  4. B. Aronov, S. Fortune, and G. Wilfong. The furthest-site geodesic Voronoi diagram. Discrete & Computational Geometry, 9(3):217-255, 1993. Google Scholar
  5. S.W. Bae and K.-Y. Chwa. The geodesic farthest-site Voronoi diagram in a polygonal domain with holes. In Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG), pages 198-207, 2009. Google Scholar
  6. B. Ben-Moshe, B.K. Bhattacharya, and Q. Shi. Farthest neighbor Voronoi diagram in the presence of rectangular obstacles. In Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG), pages 243-246, 2005. Google Scholar
  7. B. Ben-Moshe, M.J. Katz, and J.S.B. Mitchell. Farthest neighbors and center points in the presence of rectangular obstacles. In Proceedings of the 17th Annual Symposium on Computational Geometry (SoCG), pages 164-171, 2001. Google Scholar
  8. O. Cheong, H. Everett, M. Glisse, J. Gudmundsson, S. Hornus, S. Lazard, M. Lee, and H.-S. Na. Farthest-polygon Voronoi diagrams. Computational Geometry, 44(4):234-247, 2011. Google Scholar
  9. L.P. Chew and R.L. Dyrsdale III. Voronoi diagrams based on convex distance functions. In Proceedings of the 1st annual symposium on Computational geometry (SoCG), pages 235-244, 1985. Google Scholar
  10. J. Choi, C.-S. Shin, and S.K. Kim. Computing weighted rectilinear median and center set in the presence of obstacles. In International Symposium on Algorithms and Computation, pages 30-40. Springer, 1998. Google Scholar
  11. J. Choi and C. Yap. Monotonicity of rectilinear geodesics in d-space. In Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG), pages 339-348, 1996. Google Scholar
  12. P.J. De Rezende, D.-T. Lee, and Y.-F. Wu. Rectilinear shortest paths with rectangular barriers. In Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG), pages 204-213, 1985. Google Scholar
  13. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete & Computational Geometry, 1(1):25-44, 1986. Google Scholar
  14. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153-174, 1987. Google Scholar
  15. Y. Giora and H. Kaplan. Optimal dynamic vertical ray shooting in rectilinear planar subdivisions. ACM Transactions on Algorithms, 5(3):28:1-51, 2009. Google Scholar
  16. J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing, 28(6):2215-2256, 1999. Google Scholar
  17. R. Klein. Abstract Voronoi diagrams and their applications. In Proceedings of the 4th International Workshop on Computational Geometry (EuroCG), pages 148-157. Springer, 1988. Google Scholar
  18. D.-T. Lee. Two-dimensional Voronoi diagrams in the L_p-metric. Journal of the ACM, 27(4):604-618, 1980. Google Scholar
  19. E. Oh. Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 391-409, 2019. Google Scholar
  20. E. Oh and H.-K. Ahn. Voronoi diagrams for a moderate-sized point-set in a simple polygon. Discrete & Computational Geometry, 63(2):418-454, 2020. Google Scholar
  21. E. Oh, L. Barba, and H.-K. Ahn. The geodesic farthest-point Voronoi diagram in a simple polygon. Algorithmica, 82(5):1434-1473, 2020. Google Scholar
  22. E. Papadopoulou and S.K. Dey. On the farthest line-segment Voronoi diagram. International Journal of Computational Geometry & Applications, 23(06):443-459, 2013. Google Scholar
  23. E. Papadopoulou and D.T. Lee. The L_∞oronoi diagram of segments and VLSI applications. International Journal of Computational Geometry & Applications, 11(05):503-528, 2001. Google Scholar
  24. M.I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 151-162, 1975. Google Scholar
  25. H. Wang. An optimal deterministic algorithm for geodesic farthest-point Voronoi diagrams in simple polygons. In Proceedings of the 37th International Symposium on Computational Geometry (SoCG), pages 59:1-59:15, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail