Local Search with Weighting Schemes for the CG:SHOP 2022 Competition (CG Challenge)

Authors Florian Fontan, Pascal Lafourcade , Luc Libralesso , Benjamin Momège

Thumbnail PDF


  • Filesize: 0.58 MB
  • 6 pages

Document Identifiers

Author Details

Florian Fontan
  • Independent Researcher, Paris, France
Pascal Lafourcade
  • Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France
Luc Libralesso
  • Atoptima, 16 Place Sainte Eulalie, 33000 Bordeaux, France
Benjamin Momège
  • Independent Researcher, Clermont-Ferrand, France

Cite AsGet BibTex

Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local Search with Weighting Schemes for the CG:SHOP 2022 Competition (CG Challenge). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 73:1-73:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


This paper describes the heuristics used by the LASAOFOOFUBESTINNRRALLDECA team for the CG:SHOP 2022 challenge. We introduce a new greedy algorithm that exploits information about the challenge instances, and hybridize two classical local-search schemes with weighting schemes. We found 211/225 best-known solutions. Hence, with the algorithms presented in this article, our team was able to reach the 3rd place of the challenge, among 40 participating teams.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • heuristics
  • vertex coloring
  • digital geometry


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251-256, 1979. Google Scholar
  2. Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. Shadoks approach to minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG), pages 71:1-71:6, 2022. Google Scholar
  3. Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, and Luc Libralesso. Shadoks Approach to Low-Makespan Coordinated Motion Planning. In 37th International Symposium on Computational Geometry (SoCG 2021), volume 189, pages 63:1-63:9, 2021. URL: https://doi.org/10.4230/LIPIcs.SoCG.2021.63.
  4. Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.xxx, 2022. URL: http://arxiv.org/abs/2203.07444.
  5. Fabio Furini, Virginie Gabrel, and Ian-Christopher Ternier. An improved dsatur-based branch-and-bound algorithm for the vertex coloring problem. Networks, 69(1):124-141, 2017. Google Scholar
  6. Fabio Furini and Enrico Malaguti. Exact weighted vertex coloring via branch-and-price. Discrete Optimization, 9(2):130-136, 2012. Google Scholar
  7. Chao Gao, Xin Yao, Thomas Weise, and Jinlong Li. An efficient local search heuristic with row weighting for the unicost set covering problem. European Journal of Operational Research, 246(3):750-761, 2015. Google Scholar
  8. Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via constraint programming and column generation. INFORMS Journal on Computing, 24(1):81-100, 2012. Google Scholar
  9. Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring. Computing, 39(4):345-351, 1987. Google Scholar
  10. Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems. Journal of research of the national bureau of standards, 84(6):489, 1979. Google Scholar
  11. Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. European Journal of Operational Research, 203(1):241-250, 2010. Google Scholar
  12. Anuj Mehrotra and Michael A Trick. A column generation approach for graph coloring. INFORMS Journal on Computing, 8(4):344-354, 1996. Google Scholar
  13. Pablo San Segundo. A new dsatur-based algorithm for exact vertex coloring. Computers & Operations Research, 39(7):1724-1733, 2012. Google Scholar
  14. André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on Computational Geometry (SoCG), pages 74:1-74:6, 2022. To appear. Google Scholar
  15. Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search for minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG), pages 72:1-72:6, 2022. Google Scholar