Plane Hamiltonian Cycles in Convex Drawings

Authors Helena Bergold , Stefan Felsner , Meghana M. Reddy , Joachim Orthaber , Manfred Scheucher



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.18.pdf
  • Filesize: 1.12 MB
  • 16 pages

Document Identifiers

Author Details

Helena Bergold
  • Institut für Informatik, Freie Universität Berlin, Germany
Stefan Felsner
  • Institut für Mathematik, Technische Universität Berlin, Germany
Meghana M. Reddy
  • Department of Computer Science, ETH Zürich, Switzerland
Joachim Orthaber
  • Institute of Software Technology, Graz University of Technology, Austria
Manfred Scheucher
  • Institut für Mathematik, Technische Universität Berlin, Germany

Cite AsGet BibTex

Helena Bergold, Stefan Felsner, Meghana M. Reddy, Joachim Orthaber, and Manfred Scheucher. Plane Hamiltonian Cycles in Convex Drawings. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.18

Abstract

A conjecture by Rafla from 1988 asserts that every simple drawing of the complete graph K_n admits a plane Hamiltonian cycle. It turned out that already the existence of much simpler non-crossing substructures in such drawings is hard to prove. Recent progress was made by Aichholzer et al. and by Suk and Zeng who proved the existence of a plane path of length Ω(log n / log log n) and of a plane matching of size Ω(n^{1/2}) in every simple drawing of K_n. Instead of studying simpler substructures, we prove Rafla’s conjecture for the subclass of convex drawings, the most general class in the convexity hierarchy introduced by Arroyo et al. Moreover, we show that every convex drawing of K_n contains a plane Hamiltonian path between each pair of vertices (Hamiltonian connectivity) and a plane k-cycle for each 3 ≤ k ≤ n (pancyclicity), and present further results on maximal plane subdrawings.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
  • Theory of computation → Computational geometry
Keywords
  • simple drawing
  • convexity hierarchy
  • plane pancyclicity
  • plane Hamiltonian connectivity
  • maximal plane subdrawing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All good drawings of small complete graphs. In Proceedings of the 31st European Workshop on Computational Geometry (EuroCG 2015), pages 57-60, 2015. URL: http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf.
  2. Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Twisted ways to find plane structures in simple drawings of complete graphs. In Proceedings of the 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of LIPIcs, pages 5:1-5:18. Schloss Dagstuhl, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.5.
  3. Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Characterizing rotation systems of generalized twisted drawings via 5-tuples. In Proceedings of the 20th Spanish Meeting on Computational Geometry (EGC 2023), page 71, 2023. URL: https://egc23.web.uah.es/wp-content/uploads/2023/06/EGC23_paper_18.pdf.
  4. Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Pedro Ramos, Vera Sacristán, and Birgit Vogtenhuber. Empty triangles in good drawings of the complete graph. Graphs and Combinatorics, 31:335-345, 2015. URL: https://doi.org/10.1007/s00373-015-1550-5.
  5. Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber. Towards crossing-free Hamiltonian cycles in simple drawings of complete graphs. Computing in Geometry and Topology, 3(2):5:1-5:30, 2024. URL: https://doi.org/10.57717/cgt.v3i2.47.
  6. Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Convex drawings of the complete graph: topology meets geometry. Ars Mathematica Contemporanea, 22(3), 2022. URL: https://doi.org/10.26493/1855-3974.2134.ac9.
  7. Alan Arroyo, R. Bruce Richter, and Matthew Sunohara. Extending drawings of complete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics, 35(2):1050-1076, 2021. URL: https://doi.org/10.1137/20M1313234.
  8. H. Bergold, Stefan Felsner, Meghana M. Reddy, Joachim Orthaber, and M. Scheucher. Plane Hamiltonian Cycles in Convex Drawings. http://arxiv.org/abs/2403.12898, 2024.
  9. H. Bergold, Stefan Felsner, Meghana M. Reddy, and M. Scheucher. Using SAT to study plane Hamiltonian substructures in simple drawings. http://arXiv.org/abs/2305.09432, 2023.
  10. Jacob Fox and Benny Sudakov. Density theorems for bipartite graphs and related Ramsey-type results. Combinatorica, 29:153-196, 2009. URL: https://doi.org/10.1007/s00493-009-2475-5.
  11. Radoslav Fulek. Estimating the number of disjoint edges in simple topological graphs via cylindrical drawings. SIAM Journal on Discrete Mathematics, 28(1):116-121, 2014. URL: https://doi.org/10.1137/130925554.
  12. Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: Empty triangles and disjoint matchings. In Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG 2013), pages 259-266. ACM, 2013. URL: https://doi.org/10.1145/2462356.2462394.
  13. Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Empty triangles in generalized twisted drawings of K_n. In Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022), volume 13764 of LNCS, pages 40-48. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_4.
  14. Alfredo García Olaverri, Alexander Pilz, and Javier Tejel Altarriba. On plane subgraphs of complete topological drawings. Ars Mathematica Contemporanea, 20(1):69-87, 2021. URL: https://doi.org/10.26493/1855-3974.2226.e93.
  15. Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics, 191(1-3):109-111, 1998. URL: https://doi.org/10.1016/S0012-365X(98)00098-3.
  16. János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete topological graphs. Discrete & Computational Geometry, 30(2):311-320, 2003. URL: https://doi.org/10.1007/s00454-003-0012-9.
  17. János Pach and Géza Tóth. Disjoint edges in topological graphs. In Proceedings of Combinatorial Geometry and Graph Theory (IJCCGGT 2003), volume 3330 of LNCS, pages 133-140. Springer, 2005. URL: https://doi.org/10.1007/978-3-540-30540-8_15.
  18. Nabil H. Rafla. The good drawings D_n of the complete graph K_n. PhD thesis, McGill University, Montreal, 1988. URL: http://escholarship.mcgill.ca/concern/theses/x346d4920.
  19. Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. Computational Geometry, 62:1-13, 2017. URL: https://doi.org/10.1016/j.comgeo.2016.11.003.
  20. Andrew Suk. Disjoint edges in complete topological graphs. In Proceedings of the 28th Annual Symposium on Computational Geometry (SoCG 2012), pages 383-386. ACM, 2012. URL: https://doi.org/10.1145/2261250.2261308.
  21. Andrew Suk and Ji Zeng. Unavoidable patterns in complete simple topological graphs. In Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022), volume 13764 of LNCS, pages 3-15. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_1.